
Most of the computations
the hearing aid is performing
are multiply-accumulates.
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Multiplication vs. Addition

We can see from these examples that many more bits are 
needed to perform a multiplication than to perform an 
addition.
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Using a logarithmic representation of the 
audio signals allows us to take advantage 
of this difference in the effort to reduce 
power needed.

By using a logarithmic representation we can replace the multipliers with 
adders, because

log(A x B) = log(A) + log(B)
However, then the adder must be modified as well.  Lets start with this:
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We want log(A+B),  so:

Since this would be harder to calculate than the original multiplication and 
addition, this function is performed by a look-up table.  To eliminate even more 
unnecessary calculations, the look-up table is only accessed if the two inputs to 
the “adder”, i.e., the log multiplier, are significant with respect to each other.  In 
other words, if one of the values is small enough to be negligible then the look-
up is skipped and the larger number passed through, thus saving more power. 
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Abstract
One of the major technical issues facing the designers of modern digital 
hearing aids is the need to minimize the power consumption of the 
system to prolong battery life.  As new signal processing techniques are 
proposed, the computational requirements invariably grow, putting 
additional pressure on power consumption.  In this work, we investigate 
the use of non-standard numerical representations for the audio signals 
being processed, showing how the power consumption can be lowered 
for audio signal processing while maintaining (and even improving) 
overall signal quality.

Standard numerical representations for general computation include 
fixed-point representations (typically 16 bits) and floating-point 
representations (either 32- or 64-bit IEEE standard).  In this study, we 
compare the power consumption of a 16-bit linear representation with 
several different floating-point representations (4- to 6-bit exponent and 
4- to 6-bit mantissa) and a 9-bit logarithmic notation.  Each 
representation is tailored to provide a dynamic range of approximately 
100 dB and a signal-to-quantization-noise ratio of approximately 30-
35 dB (i.e., optimized for understanding of speech signals).  The power 
consumption is investigated while computing a series of multiply-
accumulate operations.  The multiply-accumulate (MAC) is the most 
common computation in audio signal processing.

For each representation, we design a hardware MAC unit in the VHDL 
language and perform a standard-cell synthesis, layout, and place-and-
route targeting the AMI Semiconductor 0.5 micron VLSI integrated circuit 
process.  The resulting design is simulated using the Mentor Graphics 
MACH-PA power analysis tool, with input vectors modeling a 21-tap 
finite impulse response band-pass filter.  The simulation output both 
verifies correct operation of the circuit and provides information on 
power consumption.

The results show a significant power savings using both the floating-
point representations and the logarithmic representation.  This is 
primarily due to the ability to either eliminate (in the case of the 
logarithmic representation) or significantly reduce the size of the 
hardware multiplier required as part of the MAC unit.  We will present 
both novel techniques for implementing the accumulation function with a 
logarithmic representation as well as the power consumption associated 
with each numeric representation.

This material is based upon work supported by the NIH under grant 
1R4-3DC04028-02, J. Goldstein, PI.
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Controlled by the
number of bits switching
More bits = more power

Every time a bit is flipped capacitance is either 
charged or discharged.  Each bit can be thought
of as a switch. V is the voltage across the bit, 
I is current charging the capacitor, and f is the
frequency at which the bit can be flipped.

We are investigating different number 
representations in order to decrease the number 
of bits that need to be flipped, thus saving power.



Our floating-point representations are named based on the number of bits in the exponent and mantissa (each representation has an 
additional sign bit, as well).  For example, a  4-5 representation has four exponent bits and five mantissa bits. In bit form they are 
expressed like this:
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Mathematically, the numbers are then expressed, with the exponent in excess notation, in this form: ( ) ( )( )12exp 1
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For example, the number 1100110101 is the 
4-5 number 1  1001  10101.  Using this 
example, we can see the relationship 
between the binary and decimal versions of 
the numbers. Note: 1001 is the unsigned 
binary equivalent 9 and 10101 corresponds 
to 21.
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These floating-point representations have some benefits 
from both the linear representation and the logarithmic 
representation.  By changing the number of bits in the 
exponent and mantissa the signal-to-noise ratio and 
dynamic range can be varied to meet desired 
specifications.

Floating Point Representations

Signal-to-Noise Ratio (SNR) and Dynamic Range
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In logarithmic representations, the base 
of the log sets the SNR, while the 
number of bits used determines the 
dynamic range.  In floating-point 
representations, the SNR is determined 
by the number of bits in the mantissa, 
while the dynamic range is determined 
by the number of bits in the exponent.  
Thus, the SNR and dynamic range can 
be set independently and the 
representation used can be chosen 
based on the desired specifications.
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Signal-to-Noise Ratio for 9-bit Logarithmic
Representation
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Signal-to-Noise Ratio for Floating-Point
Representations w ith a 5-bit Exponent
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0

20

40

60

80

100

0.00001 0.0001 0.001 0.01 0.1 1

Input Value (Vi)

S
N

R
 (

d
B

)

23.15

16.65

6.85

0

5

10

15

20

25

A
ve

ra
g

e 
P

o
w

er
 (

m
W

)

16-bit Integer w /
Naïve Multiplier

16-bit Integer w /
Baugh-Wooley

Multiplier

9-bit Logarithmic

Numerical Representation

Multiply-Accumulate Power Use Using A Real Speech Input Sample
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Multiply-Accumulate Unit Power Use Using Random Input Data

The following power analysis results were obtaining using 
Mentor Graphics Mach-PA spice-like simulator.  The simulator 
provided current  usage numbers, thus using the equation 
P=IV with V=5 Volts, we calculated the power results below.

The logarithmic representation uses less power than both the 
integer and the floating-point representation. It appears that 
the floating-point representation uses less power than the 
integer representation as well.

We believe that the logarithmic representation uses less 
average power when using random input data, as opposed to 
real speech data, since it can more frequently bypass the 
look-up table with random data.



Multiply-Accumulate Units

The multiply-accumulate (MAC) units are used to perform the convolution in the 21-tap finite impulse 
response (FIR) filter. The convolution is given by the equation below, where Xi is the current input, Yi is 
the current output, and Cj is the coefficient.
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Functional Block Diagram of the Floating-Point MACs. 
(5-5 representation shown)

Layout

The layout for each representation of the multiply-accumulate unit 
was done using Mentor Graphics IC Station.  The layout targeted an 
AMI 0.5 micron process and used the Standard Cell Library 
provided by the Mentor Graphics Higher Education Program. A 
typical layout is shown below.

Mentor Graphics IC Station Layout for the 
5-5 Floating-Point Representation
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