
Application Development on Hybrid Systems

Roger D. Chamberlain
Eric J. Tyson
Saurabh Gayen
Mark A. Franklin
Jeremy Buhler
Patrick Crowley
James Buckley

Roger D. Chamberlain, Eric J. Tyson, Saurabh Gayen, Mark A. Franklin,
Jeremy Buhler, Patrick Crowley, and James Buckley, “Application
Development on Hybrid Systems,” in Proc. of Supercomputing (SC07),
November 2007.

Dept. of Computer Science and Engineering
Dept. of Physics
Washington University in St. Louis

Application Development on Hybrid Systems

Roger D. Chamberlain
roger@wustl.edu

Eric J. Tyson
etyson@wustl.edu

Saurabh Gayen
gayen@wustl.edu

Mark A. Franklin
jbf@wustl.edu

Jeremy Buhler
jbuhler@wustl.edu

Patrick Crowley
pcrowley@wustl.edu

Dept. of Computer Science and Engineering
Washington University

St. Louis, Missouri

James H. Buckley
Dept. of Physics

Washington University
St. Louis, Missouri

buckley@wuphys.wustl.edu

ABSTRACT
Hybrid systems consisting of a multitude of different com-
puting device types are interesting targets for high-performance
applications. Chip multiprocessors, FPGAs, DSPs, and GPUs
can be readily put together into a hybrid system; however,
it is not at all clear that one can effectively deploy appli-
cations on such a system. Coordinating multiple languages,
especially very different languages like hardware and soft-
ware languages, is awkward and error prone. Additionally,
implementing communication mechanisms between different
device types unnecessarily increases development time. This
is compounded by the fact that the application developer, to
be effective, needs performance data about the application
early in the design cycle. We describe an application devel-
opment environment specifically targeted at hybrid systems,
supporting data-flow semantics between application kernels
deployed on a variety of device types. A specific feature
of the development environment is the availability of perfor-
mance estimates (via simulation) prior to actual deployment
on a physical system.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles—
heterogeneous (hybrid) systems; B.8.2 [Performance and

Reliability]: Performance Analysis and Design Aids; J.2
[Computer Applications]: Physical Sciences and Engi-
neering—Astronomy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC07 November 10-16, 2007, Reno, Nevada, USA
Copyright 2007 ACM 978-1-59593-764-3/07/0011 ...$5.00.

General Terms
Design, Experimentation, Measurement, Performance

Keywords
hybrid systems, performance modeling, hardware/software
co-design, gamma ray astronomy

1. INTRODUCTION
In recent years, a number of basic computational resource

types have matured to the point that they can materially
benefit high-performance applications. These resources in-
clude multi-core general-purpose processors, reconfigurable
hardware (e.g., FPGAs), graphics processors, digital sig-
nal processors, and other application-specific processors. In
many cases, the performance gains associated with these
specialized computational resources are quite significant, im-
proving application performance by one to two orders of
magnitude or more.

We refer to systems built out of these resources as hy-
brid systems, and while it is reasonable to construct a hard-
ware prototype that includes a number of hybrid compute
resources, application development for such a system is quite
difficult. This is true for a number of reasons.

• In most cases, each compute resource has its own lan-
guage, development environment and tools, run time
environment, and debugging aids.

• The intellectual task of describing the computation is
often quite different for each compute resource. For
example, general-purpose processors and chip multi-
processors are typically programmed using task-level
parallel threads, while reconfigurable hardware is pro-
grammed at the register-transfer level.

• Delivering data between these disparate environments
is a significant task in its own right.

The result is that while significant performance gains are
achievable using hybrid systems, it is only with enormous

programming effort. Our aim is to simplify the development
and deployment of applications onto these systems.

The above difficulties are merely the beginning of the
problem, however. Given that performance is often the pri-
mary motivating factor when using hybrid computational
platforms, the lack of consideration given to evaluating per-
formance in the vast majority of application development
environments is regrettable. Performance evaluation can
involve empirical measurements of constructed systems, or
performance estimates for candidate systems where direct
measurements are not possible. We take the position that
performance evaluation is a primary design consideration,
second only to correctness, and that it should be richly sup-
ported in the development environment.

We are designing a development environment for appli-
cations executing on hybrid computing platforms. Our so-
lution involves the use of a coordination language to spec-
ify dataflow style interconnections between compute blocks,
and native languages and tool sets for the development of
the compute blocks themselves. The environment supports
the evaluation of application performance early in the design
cycle, (semi-)automated mapping of compute blocks to com-
putational resources, and direct support for block to block
communication both within and between computational re-
sources.

Given the decomposition of an application into a set of in-
terconnected compute blocks (e.g., application pipeline stages),
and the existence of implementations (potentially on more
than one type of compute platform) of each compute block,
Figure 1 illustrates one of the design questions that the de-
velopment environment intends to address. Across the top
of the figure is an application that consists of three pipelined
computational stages (1 → 3). These stages, for example,
might represent application modules expressed both in C
and in VHDL. Across the bottom of the figure is a pair of
computing resources (compute platforms 1 and 2). The fig-
ure illustrates application stage 1 being mapped to compute
platform 1, application stage 3 being mapped to compute
platform 2, and a question as to whether application stage
2 should be mapped to compute platform 1 or 2.

application
stage 1

application
stage 2

application
stage 3

compute
platform 1

compute
platform 2

?

Figure 1: Mapping application to architecture.

When the time required to execute each application stage
on each compute platform is well known, and when the com-
munications costs for moving data between compute plat-
forms is also well understood, it is a straightforward task
to perform the above mapping optimally. When the two
assumptions above do not hold, however, the choice of ap-
propriate mapping needs to be guided by performance mod-

els that can incorporate compute time for application stages
and communication costs between stages.

While the figure illustrates a particular design question,
a full design problem has many such questions. For exam-
ple, what technology should be used for compute platform
1 (e.g., processor or reconfigurable logic)? How does this
choice impact the mapping question for application stage 2?
We have built an application development environment that
helps developers answer exactly such questions, while keep-
ing them cognizant of the performance implications of their
design decisions.

2. HYBRID SYSTEMS
For the purposes of this paper, we use the phrase hybrid

system to mean a computing system that incorporates two
or more distinct computational resource types. Candidate
computational resources (or platforms) include the following:

• general-purpose processors such as x86 processors from
AMD or Intel

• homogeneous, multi-core versions of general-purpose
processors; while AMD and Intel are shipping dual-
core x86 processors, Sun has eight-core SPARCs in
production

• heterogeneous, multi-core processors, which provide
processors of varying capability within a single chip;
they have their roots in network processors (e.g., Intel
IXP) and are expanding their scope of usage with the
introduction of the IBM Cell processor

• reconfigurable hardware in the form of Field Program-
mable Gate Arrays (FPGAs)

• Digital Signal Processors (DSPs) or other Application
Specific Instruction Processors (ASIPs); processors for
which the instruction set and/or architecture have been
optimized for an individual application or class of ap-
plications

• Graphics Processing Units (GPUs); traditionally aimed
at visual rendering, these processors are now being
used for a wide variety of purposes.

There are a wide variety of architectural options available
to the designer when constructing a hybrid system. Figure 2
illustrates an example configuration in which an FPGA is
attached to one processor via the local PCI bus, a network
processor with 8 engines is attached to another processor
via its local PCI bus, and a dual-core processor is attached
to the overall system via a local network (e.g., Ethernet or
Infiniband).

Figure 2: Example hybrid system architecture.

While it is fairly straightforward to build a hybrid sys-
tem of the type described above, it is yet another matter
to develop applications that can effectively exploit the ca-
pabilities of such a system. Distinct computational resource
types typically have their own languages for describing ap-
plications. For example,

• general-purpose processors – sequential, procedural lan-
guages such as C/C++, Java, etc.;

• multi-core processors – thread-based parallelism for
homogeneous cores, specialized constructs (often in-
cluding native assembly language) for heterogeneous
cores;

• FPGAs – hardware description languages such as Ver-
ilog, VHDL, and SystemC;

• DSPs and ASIPs – C/C++ and assembly language;
and

• GPUs – stream programming languages such as Brook [3]
or APIs such as OpenGL.

Associated with each of these languages is a distinct tool
set that includes: 1) compilers (or synthesizers) that trans-
form the source into executable form; 2) run time environ-
ments that provide services such as scheduling and resource
management; and 3) debugging aids that enable the devel-
oper to observe various portions of the state of the com-
putation. In addition, there is little support in any of the
above languages or tool sets to enable data delivery between
one type of computational resource and another. Enabling
designers to develop high performance applications that run
correctly, in spite of the above limitations, is the focus of
our research.

Even with the above obstacles to efficient use of applica-
tion developer time, performance gains have been demon-
strated on real applications executing on hybrid systems,
e.g., see [1, 2, 5, 6, 7, 9, 12, 13, 14, 16, 17, 20, 21, 24].
Example applications that can benefit from hybrid system
architectures include signal processing, biosequence search,
encryption, text search, etc. The performance gains achiev-
able in hybrid systems come from a variety of opportunities.

• fine-grained parallelism – While traditional, single-core,
general-purpose processors have fairly limited compu-
tational parallelism available, the other types of com-
putational resources available in hybrid systems offer
significant, on-chip parallelism.

• functional specialization – When specialized hardware
is well matched to the application, performance is typ-
ically much greater than when executing on general-
purpose hardware. While DSPs and GPUs provide
this benefit for a class of applications, FPGAs have
the added benefit that the hardware itself can be al-
tered to match the application, further increasing the
number of applications that can see performance gains.

• distinct compute resource types – With more than one
computational resource type in a system, it need not
be the case that the entire application be deployed
on any one resource. This has the clear advantage
that portions of the application can be deployed on the
portions of the system to which they are best suited.

While the first two points above rely on on-chip technol-
ogy, and are therefore primarily the domain of the chip man-
ufacturers, the strength of the latter point depends heavily
on the ability to efficiently move data between computa-
tional resources (i.e., the system must be tightly connected).
This tight connection must be both at the architectural level

and the application level. High-bandwidth, low-latency data
delivery mechanisms need to be available and function effec-
tively.

Most existing hybrid systems are research machines; how-
ever, there are a number of systems (and components) that
are now available commercially. Homogeneous, multi-core,
general-purpose processors are now ubiquitous. Example
systems with FPGAs include the Cray XD1 (www.cray.com)
and SGI RASC (www.sgi.com). Example FPGA add-on
boards connect to the host via PCI (typically PCI-X), such
as offerings from Annapolis Micro Systems (www.annapmicro.
com) and Nallatech (www.nallatech.com), or via HyperTrans-
port in a processor slot, such as offerings from DRC (www.
drccomputer.com) and XtremeData (www.xtremedatainc.
com). Mercury Computer (www.mc.com) makes combined
general-purpose processor (both PowerPC and Cell) and
DSP systems. Programmable GPUs are available from both
NVIDIA (www.nvidia.com) and ATI Technologies (www.ati.
com) and primarily connect via PCI (PCIe).

LabView [18] is a proprietary application development en-
vironment from National Instruments, targeted towards hy-
brid systems such as the ones described above. It is popular
among scientists and engineers because it provides a graphi-
cal language“G” that can be used to design dataflow graphs.
This graphical programming environment is a major selling
point of LabView, but drawbacks include the system’s pro-
prietary nature, as well as a lack of support for simulation,
performance analysis, and performance optimization.

Ptolemy [19] is another hybrid application development
system, with code generation capabilities for C, C++, VHDL
(incomplete), and DSP assembly (for the TI-320 series). It is
more focused towards embedded systems, and is now fairly
dated, with support for the system only existing on the So-
laris and HP-UX operating systems.

3. APPLICATION AUTHORING FOR HY-
BRID SYSTEMS

There are many possible approaches to the problem of ex-
pressing applications to be deployed across hybrid systems.
While it is possible to express arbitrary hybrid applications
using a single language, such an approach would likely be
awkward, make inefficient use of the unique resources of each
platform, and lack the robustness and user base of the lan-
guage types that have succeeded in their respective fields
(e.g., procedural languages on processors, structural HDLs
on FPGAs, or stream languages on GPUs).

Our approach is to take advantage of these relatively ef-
ficient, robust, and well-entrenched languages by designing
a coordination language called X which is capable of con-
necting task kernels—written in traditional languages—in
a dataflow manner. Each kernel, called a block, can have
any number of platform-specific implementations of vary-
ing specificity, such as an ANSI C implementation, or a C
implementation using MMX instructions for Intel compati-
ble processors, or a VHDL implementation for FPGAs. All
implementations of a single block are required to provide
the same interface and data flow semantics in order to en-
sure correctness regardless of the block-to-resource mapping.
Each language supported has a specific API and syntax for
specifying the particular dataflow interface employed by the
block, such as input ports, output ports, and configuration
values.

Output

out

Output

out

e1e1

e2e2

e3 e4e4

Generate

gen1

Generate

gen1

blockblock

edgeedge

edge labeledge label
block identifierblock identifier

Top

Multiply

mul
a

b

Multiply

mul
a

b
Generate

gen2

Generate

gen2

Square

sqr

Square

sqr

Figure 3: Example X data flow graph.

Figure 3 illustrates a compound block Top constructed
from basic blocks of type Generate, Multiply, Square, and
Output. The X code that describes Top is shown in Figure 4.
Each of the blocks within Top is instantiated, and then their
interconnections are specified. While this example uses sim-
ple functions such as multiply and square, the true target of
blocks are more course-grained computations such as filters,
FFTs, and the like.

block Top {

Generate gen1, gen2;

Multiply mul;

Square sqr;

Output out;

e1: gen1 -> mul.a;

e2: gen2 -> mul.b;

e3: mul -> sqr;

e4: sqr -> out;

};

Figure 4: Example X description.

The X language also provides language structures to ex-
press the hybrid systems themselves. We provide a library of
classes of computational resources and the interconnect re-
sources that transmit data between devices. Users can then
describe their hybrid systems, both real and hypothetical,
in terms of instances of the resource classes.

Once the user has specified an application as a set of con-
nected blocks, and the computing system as a set of inter-
connected computation resources, the deployment pattern
is specified simply by mapping each block to a computation
resource.

The X-Com compiler tool parses X language descriptions
of applications, hybrid systems, and their mapping to create
a set of compilable source files for each device in the system.
These source files, compiled with their respective platform-
specific tools (e.g., C compiler, HDL synthesizer, etc.), fully
implement the entire application as a distributed set of ex-
ecutables (e.g., one program per processor, one bitfile per
FPGA). A second tool called X-Dep further automates this
step by generating a compilation and deployment script to

perform the final linking steps and deploy the application
to real hardware devices or simulations (or emulations) of
devices.

When deployed to simulation devices, the X-Sim feder-
ated simulation environment (described further in Section 4)
is used to capture detailed performance information useful
in understanding the performance of the system. Even when
deployed to real hardware, however, the user can choose to
capture performance statistics that can be used to further
fine-tune the mapping and other application parameters, or
to improve the simulation of hypothetical systems.

Figure 5 illustrates the archetypical steps taken in the
development, functional simulation, and performance mod-
eling of an application using the X language and associated
tools. An application description, system description, and
mapping (all in X) are compiled with X-Com targeting the
simulator. X-Sim is used to execute the simulation and the
results are checked for correctness, revising the algorithm as
needed. The simulation results are then examined to assess
performance, and the mapping can be revised as desired to
improve performance. Once the user is satisfied with the
mapping, the application is compiled targeting the physical
hybrid system.

Further details on the X language and compiler may be
found in [8] and [22]. The X-Sim simulator is described
in [10].

4. PERFORMANCE MODELING
Given an application description in the X language, a

set of block implementations on various computational re-
sources, and a mapping of blocks to resources, the X-Sim
federated simulation environment can be used to verify func-
tional correctness of the application and estimate perfor-
mance on the specified computational resources. Key fea-
tures of X-Sim are:

• integration of multiple, potentially very different, sim-
ulators into a single federated simulation, and

• automation of the system simulation by coordinating
individual simulator runs.

X-Sim provides an environment in which multiple simu-
lators are seamlessly combined into simulate applications

Figure 5: Application development flow.

expressed in X mapped to hybrid systems. The X-Sim
infrastructure is open-ended to allow support for a range
of individual simulators, from low-level, discrete-event and
cycle-accurate simulators to rough estimates from analytic
models.

X-Sim generates Makefile scripts to automatically compile
and simulate applications. The scripts use data dependen-
cies derived from the application description to simulate in-
dividual components in order. In acyclic pipelined systems,
this allows one to run simulations concurrently on multi-
ple machines, subject to the precedence constraints in the
application itself.

Interconnects between computational resources are sim-
ulated using an extensible library of communication mod-
els. If a more complex communication simulator is available,
that may be used instead.

Figure 6 shows how an application with four blocks (A, B,
C, D) distributed across two devices looks when simulated
with X-Sim. Directed arrows depict the flow of data, with
inter-device communication using trace data files and intra-
device edges using the native communication methods (wires
in an FPGA, function calls on a processor). To profile ap-
plication performance, X-Sim keeps track of when data en-
ters and exits individual simulators by maintaining multiple
timestamp files (T1, T2, T3) for every interconnect. Inter-
connect models are used on all inter-device communications
to simulate data transmission.

There are three types of timestamps. The first timestamp
(T1 in Figure 6) keeps track of when data is output from
a computational device onto an interconnect. The second
timestamp (T2) indicates when the data has been transmit-
ted across the interconnect and is available to the receiving
device. The third timestamp (T3) records the time at which
the receiving device consumed the data and started process-
ing it. By maintaining these timestamps, X-Sim provides a
time trace of all data transfers that occur between compu-
tational devices.

Multiple blocks may be mapped to the same computa-
tional resource. By default, timestamps are only kept for
the data entering and exiting blocks which connect to inter-
connects.

When they are executed, each simulator generates entry
and exit timestamps in their native format. Header infor-

B

C

D

T1 T2 T3

A

Device 2Device 1

T1

T1

Interconnect

Model

Figure 6: Flow of data within an X-Sim simulation.

mation indicates the data format of the timestamps. After
all the timestamps are collected, this format information is
used to normalize them into a universal time domain. The
execution time for a computation event can be calculated by
subtracting the time input data entered a device from the
time output data exited it. These times may then be used to
generate characteristic distributions of execution times for
each device.

0

50000

100000

150000

200000

250000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.12

Event execution time (ms)

C
o

u
n

t

Figure 7: Histogram of event execution times for

a sample application task mapped to a general-

purpose processor.

For example, the histogram in Figure 7 shows the distribu-
tion of execution times measured using X-Sim for a sample
application task that was mapped to a general purpose pro-

cessor. The execution times exhibit an interesting bimodal
distribution in this case, reflecting the fact that execution
times on general purpose processors are rarely truly deter-
ministic, but rather reflect pertubations due to any number
of potential causes, from cache misses to external interrup-
tions.

An analysis component obtains basic and advanced per-
formance measurements using the timestamps. Basic mea-
surements include the mean and variance of service time
distributions associated with devices. These measurements
may be easily aggregated to determine throughput and la-
tency figures for the individual devices and the system as a
whole.

More advanced measurements may take the time distribu-
tion data and fit it to common analytic distributions (e.g.,
exponential, gamma, Gaussian) for the development of queu-
ing models. The raw data may also be used in trace-driven
analyses. A user may take these simple and complex perfor-
mance analyses and solve for various performance parame-
ters using analytic methods. Using this capability, alterna-
tive mappings may be explored to improve performance.

Currently, X-Sim requires that the devices in a simulation
be organized in an acyclic pipeline. This is because all inter-
mediate data and timestamp files must be completed before
they may be used by the next stage. An advantage of this
approach is that the simulator data dependencies are well
understood a priori. This allows independent simulations
to run in parallel. By exposing the data dependencies in the
simulation Makefile and using the file system for communi-
cation, X-Sim is able to easily distribute simulations of large
systems across many real computing resources to speed up
the simulation task.

5. APPLICATION DEPLOYMENT
Returning to the development flow diagram of Figure 5,

once the developer is satisfied with the simulation results,
the X-Dep tool is then used to deploy the application on the
target hardware. Key features of X-Dep are:

• physical instantiation of the X blocks onto the com-
putational resources to which they have been assigned
via the mapping;

• interconnection of ports on X blocks with FIFO buffers;
and

• providing the communications support between X blocks
that are assigned to distinct resources.

In effect, X-Dep transforms the X language description of
the application, machine description, and mapping into a
physical system executing the user’s program. It does this
by providing wrappers for each block that are tailored to
the specifics of how the block is mapped. The generated
wrapper code provides the input data to each input port,
accepts output from the output ports, and moves data as
required across interconnect resources for delivery between
blocks.

When the block implementations are mapped to a proces-
sor, the C code that is generated makes use of the GLib [11]
low-level portability and utility library. GLib data struc-
tures are used for memory management and queuing to fa-
cilitate the underlying data flow organization. GLib data
types are used for safety and robust management of non-
trivial data structures such as arrays. In particular, the

GArray structure is used for both constant and variable size
arrays.

If two X blocks are mapped to the same processor, the
generated interconnection code invokes the downstream block
on a send() from an upstream block. When two X blocks
are mapped to distinct processors, socket-level interprocess
communication is invoked.

For X blocks that are mapped to an FPGA, there ex-
ist generated wrappers that reside both on the FPGA it-
self and the processor to which the FPGA is physically at-
tached. In the prototype system currently in use, the FPGA
is positioned on the PCI-X bus. Using techniques described
in [4], data destined for input ports on blocks mapped to the
FPGA are moved across the PCI-X bus via a DMA transfer
to physical FIFOs on the FPGA directly wired to the input
ports of the X block’s implementation. Correspondingly,
data from output ports are moved across the PCI-X bus
via DMA back into processor memory, where the C wrap-
per either invokes the downstream block (if it is mapped to
that processor) or delivers the data to the appropriate com-
putational resource using the above-mentioned socket-level
communication mechanisms.

While the above describes the deploying of an application
to target hardware, the X-Dep tool also has responsibility
for deploying the application to the X-Sim simulation envi-
ronment as well. In this case, the generated wrappers use the
filesystem to manage the data into and out of ports, read-
ing data from trace files for input ports and writing data to
trace files from output ports. These wrappers also create
the timestamp files described in the previous section.

6. APPLICATION MAPPING AND PERFOR-
MANCE EVALUATION

To demonstrate the mapping, performance evaluation, and
execution of an application onto a hybrid system, we exam-
ine a scientific application called “high-energy gamma ray
event parametrization.” In this section we describe this ap-
plication which has been implemented in the X language,
present a set of different mappings of the application onto
software and hardware resources, and evaluate the map-
pings’ performance both in the simulator and deployed on
the actual hardware.

6.1 VERITAS Application
A common experiment in high-energy astrophysics is the

examination and characterization of gamma rays generated
by extraterrestrial sources. Astrophysicists believe these
sources may include pulsars, supernovae, neutron star colli-
sions, and supermassive black holes in galactic nuclei.

The event parametrization application is a computation-
ally intensive step in the ground-based detection of stellar
gamma ray sources. Gamma rays striking the atmosphere
result in showers of thousands of photons called Cherenkov
radiation. In astrophysics experiments such as VERITAS [23]
and HESS [15], these photons are reflected by large (10–
17 m) mirrors onto arrays of hundreds of photomultiplier
tubes. The photomultiplier tubes transduce the Cherenkov
photons, along with the unwanted diffuse background light,
to high-voltage analog waveforms. These waveforms are
then recorded by fast analog-to-digital converters at sam-
pling rates surpassing 500 MHz. We concentrate on the sig-
nal processing that is performed on the digitized waveforms

to improve the signal-to-noise ratio of Cherenkov photons
above background light, and the image processing that char-
acterizes the resulting images to discover features indicative
of gamma rays and other cosmic rays.

Our application, which has been configured for the VER-
ITAS telescopes, is depicted in Figure 8. It consists of a
configurable number (N in the figure) of signal processing
pipelines which process each of the digitized waveforms from
the 499 photomultiplier tubes. Each pipeline pads the input
to a higher resolution, and performs two frequency-domain
filters on the signal. The first filter, a low-pass, interpo-
lates the signal to correct for the padding. The second filter
performs a deconvolution to correct for signal “smear” intro-
duced by the analog electronics and improve the signal-to-
noise ratio of the individual high-energy photons over the
background. After filtering and subtracting the background
light level, the charges for each event are measured and com-
pared to a threshold. From these charge results, the first
and second moments of the telescope image are calculated.
These moments are then used to determine parameters for
the image corresponding to various shapes (e.g., filled and
hollow ellipses) commonly generated by cosmic particles.

6.2 Performance Analysis Using X-Sim
For the experimental results in this section, the VERI-

TAS pipeline computation of Figure 8 is configured to pro-
cess a stream of events. Each event corresponds to a 499-
pixel image, with each pixel waveform containing 24 samples
from the original A/D converters. Processing a sample set
of 5,000 events on an individual processor (a 2 GHz AMD
Opteron) required 255 s. We have intentionally reduced the
total compute requirements for the sample problem for illus-
tration purposes. The production version processes millions
of events, instead of a set of 5,000 events as used in our
experiments.

X language blocks have been developed for the following
kernels: zero pad, FFT, lowpass filter, deconvolution filter,
IFFT, pulse area, leading edge, pulse width, threshold test,
moment calculation, and image parameter calculation. All
of the blocks have C implementations, and zero pad through
IFFT also have VHDL implementations.

The VERITAS pipeline was described in X, and the per-
formance of two distinct mappings were investigated using
X-Sim. First, the pipeline was partitioned into three stages,
illustrated by the horizontal lines in Figure 8. Second, stages
1 and 3 were mapped to general-purpose processors (the
same type as the serial execution example above). Finally,
state 2 was alternately mapped to a general-purpose pro-
cessor (we call this mapping 1) and an FPGA (mapping 2).
Table 1 summarizes these two mappings.

Table 1: Stage to resource mappings for VERITAS

pipeline

Mapping 1 Mapping 2
Stage 1 processor processor
Stage 2 processor FPGA
Stage 3 processor processor

Mapping 1 was deployed on X-Sim and the following per-
formance information was extracted:

• Total execution time is 165 s, representing a speedup
of only 1.54 over the single processor case.

• Mean event execution time on stage 1 is 13.3 ms.

• Mean event execution time on stage 2 is 33.0 ms.

• Mean event execution time on stage 3 is 11.2 ms.

The mean event execution times given in the table repre-
sent the average time taken by each processor core in pro-
cessing an event, but does not include any estimate for the
time required for IPC data transfer between the cores. This
was done deliberately to state only empirical performance
measurements, and to exclude any subjective estimates for
communication delays. The total execution time, 165 s, for
the simulated mapping is consistent with taking the bottle-
neck time, 33.0 ms, and multiplying it by the number of
events, 5,000.

The obvious disparity of event execution times on the
three stages is clearly the primary cause of the limited per-
formance gain; however, stage 2 is subsequently mapped to
an FPGA, which will perform much better. Deploying map-
ping 2 on X-Sim, the following performance information re-
sults:

• Total execution time is now 66.5 s, representing a speed-
up of 3.8 over the single processor case.

• Mean event execution time on stage 1 is 13.3 ms.

• Mean event execution time on stage 2 is 7.9 ms

• Mean event execution time on stage 3 is 11.2 ms.

Here, the performance of stage 2 has been accelerated by
a factor of 4.2 by deploying it on an FPGA. The overall
performance, however, has only increased to the point where
stages 1 and 3 are now the bottleneck.

Clearly, further performance gains rely on the ability to
move some of the computational load off of stages 1 and 3.
One approach to doing this would be to deploy some of the
blocks currently mapped to the stage 3 processor onto the
FPGA. This option is viable if an FPGA implementation
is available for the blocks currently mapped to the stage
3 processor and there is available space on the FPGA it-
self. A second approach is to decompose stages 1 and/or
3, using a pair of processors, possibly mapping half of the
pixel pipelines to one processor and the other half to another
processor. For each of the above approaches, it is straight-
forward to examine the resulting performance implications
using X-Sim.

6.3 Performance Results on the Hybrid Sys-
tem

Both configurations from section 6.2 were deployed to a
hybrid system containing four processors and an FPGA de-
velopment board. These devices were connected in the man-
ner described in section 5.

Mapping 1 was deployed on the hybrid system and the
following performance information was extracted:

• Total execution time is 260 s, representing a negligible
slowdown over the single processor case. This is due
to the introduction of significantly increased commu-
nication overhead, experienced strongly by stage 2.

• Mean event execution time on stage 1 is 15.9 ms.

• Mean event execution time on stage 2 is 52.0 ms.

 Raw data records (up to 499 channels) x (8 bits x up to 24 samples)

N 21

Calculate moments

M1[X], M1[Y],

 M2[X], M2[Y]

Calculate image parameters:

width, length, centroid, orientation

Pulse

Area

Leading

Edge

Pulse

Width

>Threshold

Zero Pad

FFT Waveform

250 MHz

Lowpass

Deconvolve

iFFT

Pulse

Area

Leading

Edge

Pulse

Width

Pulse

Area

Leading

Edge

Pulse

Width

>Threshold>Threshold

Zero Pad

FFT Waveform

250 MHz

Lowpass

Deconvolve

iFFT

Zero Pad

FFT Waveform

250 MHz

Lowpass

Deconvolve

iFFT

Read Data

S
ta

g
e
 1

S
ta

g
e
 2

S
ta

g
e
 3

Distribute

 Merge

Figure 8: The VERITAS pipeline for Cherenkov image parametrization.

• Mean event execution time on stage 3 is 13.4 ms.

Each of these times are higher than the measurements for
the simulated system, but a part of the discrepancy can be
attributed to communication delays that were not accounted
for in the simulation. However, the measured time for stage
2 when deployed is 52.0 ms, significantly higher than the sim-
ulated mapping’s measurement of 33.0 ms. This is due to
the small default size of the Linux IPC queues; these queues
are used for the high-volume communication between pro-
cessors and thus they fill up quickly. This causes the process
to become blocked, which adds significantly to the measured
processing delay. Future work will improve this communi-
cation link with a customizably large queue implemented in
shared memory.

Deploying mapping 2 on the hybrid system, the following
performance information results:

• Total execution time is now 133 s, representing a speed-
up of 1.9 over the single processor case.

• Mean event execution time on stage 1 is 24.1 ms.

• Mean event execution time on stage 3 is 15.9 ms.

Stage 2 (on the FPGA) was not configured to record per-
formance information, however based on the other stages’
results, it was not the bottleneck in the system. In this
configuration, stage 1 has become the bottleneck.

The stage 3 time is 15.9 ms, slightly higher than the sim-
ulation prediction of 11.2 ms. Once again, communication
delay can reasonably be blamed for a substantial portion
of this. However, the stage 1 time for the deployed sys-
tem is 24.1 ms, significantly higher than the simulated time
of 13.3 ms. The probable reason for this is that the com-
munication mechanism being used for communication over
the PCI-X bus has a high overhead penalty for small data
transfers.

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions
Hybrid systems are capable of improving application per-

formance by several orders of magnitude, albeit with enor-
mous programmer effort. Our aim is to simplify the pro-
gramming of such systems, and to that end we are building
an application development environment that supports the
flexible mapping of application components onto computa-
tional resources and the automatic delivery of data between
these computational resources.

An important component of this development environ-
ment is the emphasis placed on performance assessment and
evaluation. The major purpose for deploying applications on
hybrid systems is to exploit the performance gains achiev-
able, and enabling the application developer to observe the

performance implications of design choices is crucial to effi-
cient use of developer time.

7.2 Current Status and Future Work
The current status of the system is as follows:

• X-Com The compiler is functional, supporting the trans-
formation of X dataflow descriptions and C/C++ or
HDL block implementations into the set of binaries
and/or bitfiles needed for execution. Future work in-
cludes the expansion of supported native languages to
include Brook for GPU support.

• X-Dep The deployment tool currently only supports
deployment to physical processors, FPGAs, and to
the simulator (including processor and FPGA simu-
lations). We are currently expanding this to include
GPUs connected via PCIe.

• X-Sim The federated simulator currently supports na-
tive execution of blocks implemented in C/C++ on
a traditional processor and Modelsim simulation of
blocks implemented in HDL targeted at an FPGA.
Future work includes a processor simulator (e.g., Sim-
plescalar) and a wider set of communication models.

• Overall Verification and Validation (V&V) of the per-
formance predictions made by the federated simulator
are currently underway. While we are confident of sim-
ulation correctness (verification), clearly improvement
is needed in the area of performance values (simulation
predictions and empirical execution time).

Our vision is that the development environment be acces-
sible by a variety of users, not just in the computer science
community but in the wider scientific community as well,
enabling the effective exploitation of hybrid computer archi-
tectures across a large application set. To enable this vision
to become a reality, we must ensure that:

1. the system can generate fully executable images on a
number of physical hybrid systems,

2. the performance model predictions are both under-
standable and reliable,

3. a large collection of usable blocks are implemented on
more than one computational resource,

4. a collection of developers are enabled to design addi-
tional block implementations, and

5. the entire system is well supported and well docu-
mented.

We are doing all we can to ensure all of the above takes
place, enabling the use of hybrid systems on many real-world
problems.

8. ACKNOWLEDGMENTS
This research has been supported in part by National Sci-

ence Foundation grant CCF-0427794.

9. REFERENCES
[1] L. Atieno, J. Allen, D. Goeckel, and R. Tessier. An

adaptive Reed-Solomon errors-and-erasures decoder.
In Int’l Symp. on Field Programmable Gate Arrays,
pages 150–158, 2006.

[2] Z. K. Baker and V. K. Prasanna. Efficient hardware
data mining with the apriori algorithm on FPGAs. In
Proc. of 13th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines,
pages 3–12, 2005.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman,
K. Fatahalian, M. Houston, and P. Hanrahan. Brook
for GPUs: Stream computing on graphics hardware.
ACM Transactions on Graphics, 23(3):777–786, Aug.
2004.

[4] R. D. Chamberlain, B. Shands, and J. White.
Achieving real data throughput for an FPGA
co-processor. In Proc. of 1st Workshop on Building
Block Engine Architectures for Computers and
Networks, Oct. 2004.

[5] W. Chen, P. Kosmas, M. Leeser, and C. Rappaport.
An FPGA implementation of the two-dimensional
finite-difference time-domain (FDTD) algorithm. In
Int’l Symp. on Field Programmable Gate Arrays,
pages 213–222, Feb. 2004.

[6] K. Fatahalian, J. Sugerman, and P. Hanrahan.
Understanding the efficiency of GPU algorithms for
matrix-matrix multiplication. In Proc. of the ACM
Conf. on Graphics Hardware, pages 133–137, 2004.

[7] M. A. Franklin, R. D. Chamberlain, M. Henrichs,
B. Shands, and J. White. An architecture for fast
processing of large unstructured data sets. In Proc. of
IEEE 22nd Int’l Conf. on Computer Design, pages
280–287, Oct. 2004.

[8] M. A. Franklin, E. J. Tyson, J. Buckley, P. Crowley,
and J. Maschmeyer. Auto-pipe and the X language: A
pipeline design tool and description language. In Proc.
of Int’l Parallel and Distributed Processing Symp.,
Apr. 2006.

[9] N. Galoppo, N. K. Govindaraju, M. Henson, and
D. Manocha. LU-GPU: Efficient algorithms for solving
dense linear systems on graphics hardware. In Proc. of
the ACM/IEEE Conf. on Supercomputing, pages 3–14,
2005.

[10] S. Gayen, E. J. Tyson, M. A. Franklin, and R. D.
Chamberlain. A federated simulation environment for
hybrid systems. In Proc. of 21st Int’l Workshop on
Principles of Advanced and Distributed Simulation,
pages 198–207, June 2007.

[11] The Glib Team. GLib Reference Manual.
http://developer.gnome.org/doc/API/glib.

[12] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
GPUTeraSort: high performance graphics co-processor
sorting for large database management. In Proc. of
SIGMOD Int’l Conf. on Management of Data, pages
325–336, 2006.

[13] Z. Guo, W. Najjar, F. Vahid, and K. Vissers. A
quantitative analysis of the speedup factors of FPGAs
over processors. In Int’l Symp. on Field Programmable
Gate Arrays, pages 162–170, Feb. 2004.

[14] M. C. Herbordt, J. Model, Y. Gu, B. Sukhwani, and
T. VanCourt. Single pass, BLAST-like, approximate

string matching on FPGAs. In Proc. of IEEE Symp.
on Field-Programmable Custom Computing Machines,
pages 217–226, 2006.

[15] W. Hofmann, for the H.E.S.S. Collaboration. Status of
the high energy stereoscopic system (H.E.S.S.)
project. In Proc. of 27th Int’l Cosmic Ray Conf.,
pages 2785–2788, 2001.

[16] D. R. Horn, M. Houston, and P. Hanrahan.
ClawHMMER: A streaming HMMer-search
implementation. In Proc. of ACM/IEEE Conf. on
Supercomputing, pages 11–19, 2005.

[17] M. Leeser, S. Miller, and H. Yu. Smart camera based
on reconfigurable hardware enables diverse real-time
applications. In Proc. of 12th Annual IEEE
Symposium on Field-Programmable Custom
Computing Machines, pages 147–155, 2004.

[18] National Instruments. Labview.
http://www.ni.com/labview.

[19] The Ptolemy Team. The Ptolemy Kernel – Supporting
Heterogeneous Design. RASSP Digest Newsletter,
2(1):14–17, Apr. 1995.

[20] R. Scrofano, M. Gokhale, F. Trouw, and V. K.
Prasanna. Hardware/software approach to molecular
dynamics on reconfigurable computers. In Proc. of
14th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 23–34, 2006.

[21] J. L. Tripp, H. S. Mortveit, A. A. Hansson, and
M. Gokhale. Metropolitan road traffic simulation on
FPGAs. In Proc. of 13th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines,
pages 117–126, 2005.

[22] E. J. Tyson. Auto-pipe and the X language: A toolset
and language for the simulation, analysis, and
synthesis of heterogeneous pipelined architectures.
Master’s thesis, Washington University in St. Louis,
Department of Computer Science and Engineering,
2006.

[23] T. Weekes et al. VERITAS: the very energetic
radiation imaging telescope array system.
Astroparticle Physics, 17(2):221–243, May 2002.

[24] D. Zaretsky, G. Mittal, X. Tang, and P. Banerjee.
Overview of the FREEDOM compiler for mapping
DSP software to FPGAs. In Proc. of 12th Annual
IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 37–46, 2004.

