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Abstract—Streaming data applications are frequently
pipelined and deployed on application-specific systems to meet
performance requirements and resource constraints. Typically,
there are several design parameters in the algorithms and
architectures used that impact the application performance as
well as resource utilization. Efficient exploration of this design
space is the goal of this research.

When using architecturally diverse systems to accelerate
streaming applications, the design search space is often com-
plex. The search complexity can be reduced by recognizing and
exploiting convex variables to perform convex decomposition,
preserving optimality even in the context of a non-convex
optimization problem. This paper presents a formal treatment
of convex variables and convex decomposition, including a
proof that the technique preserves optimality. It also quantifies
the reduction in the search space that is realized, at minimum
equal to the number of distinct values of the convex variable
and potentially much higher.

Keywords-design-space exploration; domain-specific branch
and bound; decomposition of queueing networks

I. INTRODUCTION

In streaming applications, application data is fed for-

ward over a pipeline of computational and communication

elements to achieve high performance. Such applications

abound in the areas of biosequence analysis, computer

networking, signal processing, video processing, image pro-

cessing, and computational science. Streaming applications

are sufficiently widespread that several programming lan-

guages have been developed for them, including Brook [1],

and StreamIt [2].

High performance streaming applications are frequently

deployed on hybrid systems (employing chip multiproces-

sors, graphics engines, and reconfigurable logic). Typically,

there are many design parameters that impact application

performance and resource utilization. The number of options

available to the designer is significantly further increased

when considering application-specific systems, as the pa-

rameter space increases to include architecture parameters as

well (e.g., custom datapath designs, cache sizes, instruction

sets, etc.). Searching the design space of possible configu-

rations, commonly referred to as design-space exploration,

is challenging because:

1) the number of configurations is exponential in the

number of design parameters,
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2) the design parameters may interact nonlinearly, and

3) the goals of the design-space exploration are often

multiple and conflicting.

We approach design-space exploration as an optimization

problem in which we seek a globally optimal configura-

tion. Such optimization problems tend to be mixed-integer

nonlinear (MINLP) problems that are frequently non-convex

and NP-hard. Hence, we have developed in our earlier work

a domain-specific branch-and-bound search framework [3].

Starting from queueing network (QN) models [4] that de-

scribe the application’s performance under steady state,

we decompose the optimization problem by exploiting the

topology of the application’s pipelining, thereby reducing

the size of the search space. After decomposition, however,

the search space size can still be considerable.

In this paper, we introduce the concept of convex variables

in the context of an overall non-convex optimization prob-

lem. A convex variable is a design parameter for which the

optimization problem’s objective function is convex when

all other parameters are held constant, (i.e., the objective

function is convex along the single dimension defined by

the convex variable). By recognizing and exploiting these

variables, one can achieve additional search space size

reductions through what we call convex decomposition.

In convex decomposition, we decompose the optimization

problem and solve for each convex variable separately from

the remaining parameters, thus reducing search complexity

but preserving optimality. We illustrate this decomposition

using an application motivated from computational finance.

Consider, for example, the ingest rate of an application’s

pipeline. Let us denote this by λin. If the design goals

include both high throughput and low latency, the ingest

rate of the pipeline has a conflicting influence on these two

goals. Higher ingest rate is clearly associated with a higher

throughput. However, due to queueing in the system, a

higher ingest rate can also be associated with longer latency.

When such design goals are combined using the standard

technique of weighted sum, it is possible that the ingest rate

is a convex variable, even when the overall optimization

problem is non-convex. To our knowledge, we are the first

to identify such convex variables and exploit them to reduce

the search complexity.

The contributions of this paper are as follows: (1) the

formal specification of the MINLP optimization problem

(including identifying the problem’s general form) and its
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decomposition into Jordon block form, making more precise

the informal definitions presented in [3]; (2) a proof that

convex decomposition using convex variables, using λin

as an example, preserves optimality; and (3) a queueing

network model and the quantitative search space reduction

for a real-world problem from computational finance. This

paper expands upon results initially disclosed as an extended

abstract [5].

II. RELATED WORK AND BACKGROUND

Design-space exploration has been researched extensively

for embedded applications. Search heuristics as well as

standard and modified optimization techniques have been

well researched [6], [7], [8]. Search heuristics, including

evolutionary algorithms such as simulated annealing (SA),

genetic algorithms, and ant colony algorithms, have limited

theory to guarantee optimal solutions, wherein branch and

bound guarantees an optimal solution. Even when there

is theory to guarantee an optimal solution, as with SA,

these approaches can be unrealistic and not practical for

finding a global optimum. An example is the logarithmic

cooling schedule required by SA to achieve optimality.

A recent trend has been to model the application’s per-

formance analytically (mathematically) and use the model

with search heuristics. Examples of such models include

predictive models [9], [10] and examples of search heuristics

include gradient ascent [10]. Predictive models are based

on regression or machine learning and trained with empiri-

cal experimentation through simulation or direct execution.

Such models are general and hence can be applied to

any design space. Code annotation-based empirical design-

space exploration with search heuristics has been used with

scientific applications [11]. Auto-tuning has been performed

with compiler optimization using search heuristics [12]. For

high-performance distributed streaming applications on Sys-

tem S, efficient operator fusion (through graph partitioning

and using Integer Programming) is used in the physical

processing element graph [13].

Decomposition techniques exist for dealing with compli-

cating variables [14], [15]. For MINLP problems in partic-

ular, integer variables are treated as complicating variables

and if the resulting nonlinear program (NLP) is convex at

least locally, Benders decomposition is known to converge

to an optimal solution (or to some small duality gap).

Another approach with MINLP problems is to consider the

nonlinear constraints as complicating constraints and apply

the outer linearization algorithm, provided the nonlinear

constraints are inequalities and the objective function is

linear (both of which can often be achieved through simple

transformations). However, it is often the case that the num-

ber of complicating variables and nonlinear constraints in

streaming applications is too large for these decomposition

techniques to be effective, hence our focus on developing

domain-specific decomposition techniques.

Appl.
stage 1

Appl.
stage 3

31

Appl.
stage 2

2

Figure 1: Example streaming application and associated

queueing network model.

Figure 2: Jordan block form with complicating variables.

A brief overview of our use of QN models through

the example of Figure 1 follows. A three-stage pipelined

application is modeled with a three-stage QN. Each stage

in the QN represents a queueing station (service center).

For a BCMP queueing network, the equivalence property

states that (under steady-state conditions) each station can

be analyzed independently [4]. In such a network, it is con-

ventional to denote the mean job arrival rate at every station

j as λj and the mean service rate as μj . Analytic models

for the service rates and network branching probabilities are

assumed to come from the user (see Section V).

In our prior work [3], we demonstrated that by exploiting

the canonical Jordan block (JB) form [16] (Figure 2 shows

the JB form in a generic constraint-variable matrix), we can

decompose the problem and optimize the queueing stations

in the network separately (as independent Jordan blocks),

preserving optimality and achieving significant reductions in

the search complexity. In real-world applications, however,

there are usually design parameters (i.e., variables) that

prevent such decomposition, also shown in Figure 2. Such

variables are traditionally called complicating variables. For

our applications, we define complicating variables as those

variables that concern more than one Jordan block, including

the variables that alter the queueing network topology itself.

We categorize the variables informally as follows. Com-

plicating variables that alter the queueing topology are called

topological variables, and the non-topological complicating

variables are called multi-JB variables. Variables associated

with only a single Jordan block are called single-JB vari-

ables. Variables that are expressed in terms of the design

variables are derived variables. Examples are performance

metrics, the value of the cost function, and abstractions

introduced by queueing theory (which we call intermediary

variables), such as μj and λj .
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III. FORMAL SPECIFICATION

Formal definitions of the variable categories, including a

vector form and a set form for each category, are provided

below. The relationships between the variable categories are

summarized in Figure 3. Subsequently, the general form of

the optimization problem is presented.

1) var = {vari|vari ∈ R+ ∪ {0}} is the set of design

variables in the optimization problem that correspond

to the user-identified design parameters. Many of these

variables are integer- or binary-valued. nv
.
= |var| and

�v ∈ (R+∪{0})
nv is the vector of the variables in var.

var = top ∪mj ∪ sj.

a) top ⊆ var is the set of topological variables that

result in distinct alternative QN topologies. nt
.
=

|top|. �t is the vector formed by these variables.

b) mj ⊆ var is the set of multi-JB variables, with

each element in the domain of more than one

uj(·). nmj
.
= |mj|. �m is the vector formed by

these variables.

c) sj ⊆ var is the set of single-JB variables. Each

element of sj is in the domain of only one uj(·).
nsj

.
= |sj|. �s is the vector formed by these

variables.

2) der = {deri|deri ∈ R+ ∪ {0}} is the set of derived

variables that depend on one or more elements in var.

der
⋂
var = Ø.

a) met ⊆ der is the set of performance metrics.

nm
.
= |met|. �M is the vector formed by the

variables in met. Mk = ok(�v) : (R+∪{0})
nv →

R+∪{0}. �o is the vector of functions that define
�M.

b) z ∈ der is the value of the objective function

(cost function). z =
∑nm

k=1
Wk ×Mk : (R+ ∪

{0})nm → R+,
∑nm

k=1
Wk = 1, Wk are the

weights (including any required normalization).

c) ivar ⊆ der is the set of intermediary variables.
�i is the vector of variables in ivar. �i = (�λ, �μ).

i) mu ⊆ ivar is the set of mean service rates at

each queueing station. �μ is the vector formed

by the variables in mu. μj = uj(�v) : (R+ ∪
{0})nv → R+. �u is the vector of functions

that define �μ.

ii) lam ⊆ ivar is the set of mean job arrival

rates at each queueing station. �λ is the vector

formed by the variables in lam. Elements of
�λ are related by a system of linear equations

with a unique solution in terms of the ingest

rate, denoted by λin ∈ R+. The ingest rate is

traditionally referred to as the input mean job

arrival rate in the queueing theory literature.

λj = lj(λin,�t) : R+∪{0}×Z
nt
+ → R+∪{0}.

�l is the vector of functions that define �λ.

Figure 3: Categories of design variables.

QN topologies are annotated digraphs that may be cyclic.

Annotations include, at the minimum, expressions for each

of �u, �l, �o, and z; each node represents a queueing station

which is a service facility with its queue and each edge, the

communication link between the two connected nodes.

In the general form of the optimization problem, functions

�o, �u,�l, �g,�h might not be convex, differentiable, or even con-

tinuous but are assumed to have closed form. The constraints

in Equation (4), compared element-wise, ensure stability of

the system. The constraints in Equations (5) and (6) are

general user-specified constraints.

min
�v

z =

nm∑
k=1

Wk · ok(�v) (1)

subject to μ = �u (�v) (2)

λ = �l
(
λin,�t

)
(3)

�λ < �μ (4)

�g (�v) ≤ 0 (5)

�h (�v) = 0 (6)

In [3], we provided a search procedure and heuristic variable

branching order that exploits the queueing network topology,

reducing the search space from the product of the domain

sizes of variables in sj to their sum. In what follows, we

show conditions under which the optimum value for λin ∈
mj can be analytically determined (i.e., does not need to

have all of its possible values considered).

IV. CONVEX DECOMPOSITION

As stated earlier, the application’s ingest rate, denoted

by λin, is a convex variable if z(λin) is convex. A real

differentiable function of a single variable is convex on an

interval if and only if its derivative is monotonically non-

decreasing on that interval [17]. In the presence of a convex

variable, if one can effectively choose optimal values for the

remaining variables, independent of the value of the convex

variable, determination of the value of the convex variable
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is then straightforward. This is precisely the focus of convex

decomposition. In convex decomposition, we decompose the

optimization problem to exclude the convex variable and

solve for the remaining variables as a new optimization

problem (with a new objective function). The solution is then

substituted back in the original problem and we then solve

for the convex variable analytically (rather than branching

on all of its values). In what follows, we prove that the

resulting configuration is globally optimum.

Notation. When the general optimization problem formu-

lated above satisfies the sufficient conditions for λin being

a convex variable and is amenable for convex decomposition,

it takes the form shown below. We denote such a problem as

P . The variables in �v are organized as �v = (�m, �s1, . . . , �sn).
�m are the only complicating variables remaining after

branching on topological variables, per the heuristic for

ordering branching variables [3]. Recall that λin ∈ mj.

Let us denote variables other than λin in �v by �v′. The

single-JB variables (non-complicating) �sj concern queueing

station j; �sj = (sj1, sj2, . . . , sjnj
). nj denotes the number

of elements in each �sj . It is assumed that there are no

additional constraints specified by the user. The problem

formulation of P is:

min
�v

z =

nm∑
k=1

Wk · ok(�i) (7)

subject to �μ = �u(�v′) (8)

λj = Kj · λin, λin ∈ R
+; (9)

Kj are scaling factors ;

j = 1, 2, . . . , n
�λ < �μ (10)

For a convex variable to result in convex decomposition,

we identify the following sufficient conditions: a) none of

performance metrics in the objective function suffer from

higher service rates at any queueing station; b) variables in

�μ depend only on variables in �v′ whereas variables in �λ
depend only on λin, as shown in Equations (8) and (9);

and c) λin is not involved in the bound of any other design

variable, while it can be bounded itself.

Let Pλ be the optimization problem when λin is assigned

a particular value Λ.

min
�v′

zλ =

nm∑
k=1

Wk · ok(�i) (11)

subject to �μ = �u
(
�v′
)

(12)

λj = Kj · Λ, j = 1, 2, . . . , n (13)

�λ < �μ (14)

Let PT be the problem created by transforming Pλ as

shown below.

max
�v′

zT =

n∑
j=1

μj (15)

subject to �μ = �u
(
�v′
)

(16)

Let �sT be the solution to PT (i.e., �sT is the optimal

assignment to v′) and let �μ∗ represent optimal values of

�μ in the solution of PT .

Let P ′ be the problem obtained by substituting �sT in P
as shown below. λin is the only design variable to be solved

for in P ′.

min
λin

z′ =

nm∑
k=1

Wk · ok(�μ
∗, �λ) (17)

subject to �λ < �μ∗ (18)

λj = Kj · λin, j = 1, 2, . . . , n (19)

P ′ is a convex optimization problem because z(λin) being

convex means z′(λin) is also convex and the constraints

are linear. The solution to P ′, denoted by s′, will provide

an optimal value for λin in P ′. The corresponding optimal

values of �λ are denoted by �λ∗.

Claim. When each measure in the objective function of P
(denoted by ok) decreases monotonically with each variable

in �μ, we can solve P optimally by solving optimally the

problems of PT and P ′ described above. That is, solution

�sT from PT and s′ from P ′ together constitute an optimal

solution of �v in P .

Proof: Let
�̃
λ and �̃μ denote the optimal values of �λ and

�μ if we solved P (optimally). Let z̃ denote the objective

function value obtained by substituting
�̃
λ, �̃μ in z, (i.e.),

z̃ =

nm∑
k=1

Wk · ok(�̃μ,
�̃
λ) (20)

Let z∗ denote the objective function value in P obtained

by substituting �μ∗ from the optimal solution of PT and
�̃
λ

from the optimal solution of P , (i.e.),

z∗ =

nm∑
k=1

Wk · ok(�μ
∗,
�̃
λ) (21)

�μ∗ ≥ �̃μ because PT maximizes each μj while the original

objective function in P may not always maximize each μj .

Further, each ok decreases monotonically with each element

of �μ. These together make z∗ ≤ z̃. It then follows that �sT
contains optimal values of �v′ in P . With �v′ fixed at their

optimal values, when we solve for λin in P ′, we get the

optimal value of λin in P ′. Recall that P ′ is the problem

remaining when only λin is to be solved for in P . Thus, we

now have optimal values for all the variables in �v in P .
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This proves our claim.

Remark. If PT happens to be convex, theory exists for

solving PT in polynomial time. If PT is not a convex

problem, however, the decomposition technique from [3] can

be used to reduce the search complexity.

Reduction in the number of branch evaluations: Let there

be nv variables with each variable having k values. Then,

the number of leaves in a branch and bound tree is given by

knv . However, when there is a convex variable, the number

of leaves reduces to knv−1. That is, the reduction in the

number of leaves is directly proportional to the number of

values considered for the variable. When PT is a convex

optimization problem, however, any tree node evaluating the

convex variable becomes a terminal node (leaf). Let us say

the convex variable is evaluated at height h of the tree. In this

case, the number of leaves reduces to kh. When h << nv ,

the reduction in the number of leaves is significant.

V. APPLICATION

There are a number of circumstances under which bal-

ancing latency and throughput is a valid concern for the

application developer. In computational finance, the problem

of risk assessment for a portfolio entails both latency con-

cerns (trades need to be executed quickly) and throughput

concerns (many potential candidate portfolios need to be

assessed) [18]. This application includes a sort function

which is used below to illustrate our technique. Generally,

any decision-making process that is time sensitive and

operates on large data sets frequently has this need to balance

latency and throughput. In addition to computational finance,

examples include sorting of agricultural seeds [19], face

recognition [20], etc.

In computational finance, while computing the value-

at-risk for a portfolio of financial instruments, there is a

repeated requirement to sort a reasonably large number

of elements (e.g., a few million) at high throughput with

minimum latency [18]. The effective use of architecturally

diverse platforms for sorting has received considerable at-

tention in the literature [21], [22].

In the streaming sort application, input data is split into

parts and each part is sent to a sort instantiation. This appli-

cation topology is shown in Figure 4. The sort instantiation

is referred to as a sort “block”. The sort blocks execute in

parallel and when done, each block sends its output to a

merge block. The merge block then merges its inputs and

sends out the sorted data.

The application parameters, or design variables, include

the degree of parallelism embodied in the number of sort

blocks employed. The number of sort blocks impacts the

application topology, as illustrated in Figure 5, which shows

a 4 sort block instantiation. Additional design variables

include: number of elements to be sorted, computational

Split

Sort (1)

Sort (2)
MergeRead 

input

(1)

(2)

(3)

(4)

Send 
output

Split

Sort (1)

Sort (2)
MergeRead 

input

(1)

(2)

(3)

(4)

Send 
output

Figure 4: Streaming sort application.

Merge (3)

Sort (1)

Sort (2)

Sort (3)

Sort (4)

Send 
output

Split (1)
Read 
input

Split (3)

Split (2)

Merge (2)

Merge (1)(1)

(2)
(5)

(6)

(3)

(4)
(11)

(12)

(9)

(10)

(7)

(8)

Figure 5: A streaming sort application with 4 sort blocks.

resource types (processor cores or FPGA) and their counts

(how many of each), sorting algorithm (within the sort

blocks), message size on a communications link, data ingest

rate, and others. The complete set of design variables,

along with their characterization, bounds, and constraints

are enumerated in Figure 6. Only a few interesting and

illustrative mappings are considered here. t0 models the

topology when every compute block in the application gets

its own set of resources, t1 models when all compute blocks

share a single resource, tCR models when all split blocks

share a single computation resource, and tIR models when

the communication links into and out of the sort blocks are

shared.

For the application topology shown in Figure 4, an

M/M/1 BCMP queueing model is shown in Figure 7.

Note that each pipeline stage, including the communication

links, is modeled as an individual queueing station. Some

mapping choices change the queueing network’s topology.

An example of such a mapping choice is tIR. The resulting

queueing network in illustrated in Figure 8, where the server

“Comm” is handling all of the communication both into and

out of the “Sort” server.

The expressions for mean service rate at each server, μj ,

and the relationships between the mean arrival rates, λj , are

Comm
1, 2 Sort MergeComm

3, 4Split

Figure 7: Queuing network model for the application

topology in Figure 4.

Split Comm Sort

Merge

.5

.5

Figure 8: Queueing network has feedback when

communication edges to/from sort blocks are shared.
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Variable Symbol Ranges and Constraints

Number of elements to be sorted 2B SZ B SZ ∈ Z+ (e.g., 20)

Number of sort blocks 2N N = 1, 2, 3, ..., B SZ
2

; N ∈ top
Index of split stages j j = 0, 2, ..., 2N − 1
of link stages left of sort stage j = 1, 3, ..., 2N − 1
of sort stage j = 2N
of link stages right of sort stage j = 2N + 1, 2N + 3, ..., 4N − 1
of merge stages j = 2N + 2, 2N + 4, ..., 4N
Compute resource type binary: cpuj or fpgaj j = 0, 2, ..., 4N ; cpuj + fpgaj = 1

each cpuj ∈ mj; each fpgaj ∈ mj;

Communication resource type binary: smemj or gigej j = 1, 3, ..., 4N − 1; smemj + gigej = 1
each smemj ∈ mj; each gigej ∈ mj;

Number of compute resources nResj j = 0, 2, ..., 4N ; ∀j, nResj ≥ 1; nResj ∈ sj

∀ split, sort stages: nResj ≤ 2
j
2

∀ merge stages: nResj ≤ 2
4i−j

2

Number of communication resources nResj j = 1, 3, ..., 4N − 1; ∀ j, nResj ≥ 1; nResj ∈ sj

∀ links left of sort: nResj ≤ 2
j+1

2

∀ links right of sort: nResj ≤ 2
4i−j+1

2

Mapping choices binary: t0, t1, tCR, tIR t0 + t1 + tCR + tIR = 1; each ti ∈ top
System-wide comm message size 2M M = 0, 1, . . . ,MUB where

MUB ≤ N ; MUB ∈ Z+ (e.g., 14); M ∈ mj
Sort algorithm binary: alg1 or alg2 t1(fpga0 + alg1 + alg2)
(only with cpuj mapping) +(1− t1)(fpgaj + alg1 + alg2) = 1, j = 2N ;

alg1 ∈ sj; alg2 ∈ sj;

Input mean job arrival rate λin ∈ R+ Constrained by Equation (3); λin ∈ mj

Figure 6: Design variables for streaming sort. Binary variables are used to select among resource types (processor core vs.

FPGA), mappings, and sort algorithms.

derived from first principles or using spline fitting [10] and

have been validated to be within 1% of published empirical

results [21], [23]. Arrival rates at each queueing station are

related as follows.

λj = λin for j = 1, 2, ..., 2N − 2 (22)

λj = 2λin for j = 2N − 1

λj = λin for j = 2N

λj = (1− t1) · λin for j = 2N + 1

λj = λin for j = 2N + 2, 2N + 3, ..., 4N

The expression for the mean service rate of the sort blocks

is shown below and the expressions for split and merge

blocks are similar. The Cs in the equation are constants,

while cpuj , fpgaj , ti, and algi are binary selection variables

that indicate the type of compute resource (processor core

or FPGA), mapping choice, and algorithm. The number of

resources deployed at level j in the application topology

is indicated by nResj . The performance effect of changing

the number of computational resources assigned to a stage

is modeled through a scaling factor.

t c =
alg1 · C1 · nRes0

2B SZ · log
(

2B SZ

2j/2

) +
alg2 · C2 · nRes0

22·B SZ

t f =
C3 · nRes0
2B SZ

r c =
alg1 · C1 · nResj

2B SZ · log
(

2B SZ

2j/2

) +
alg2 · C2 · nResj

22·B SZ

r f =
C3 · nResj
2B SZ

μj = (t1) · (cpu0 · t c+ fpga0 · t f) +

(1− t1) · (cpuj · r c+ fpgaj · r f) (23)

j ∈ {sortIndex}

For communication elements, μj is defined as a function

of the communication message size denoted by M , in

addition to the factors mentioned earlier. The normalized

effective data rate (as a function of message size, M ) is

denoted by R, and is modeled using a restricted cubic spline

model [10]. βi are the coefficients and κi are the knot

positions obtained from the regression fitting.
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R = β0 + β1 · 2
M +

i=8∑
i=2

βi ·max(2M − κi−1, 0)
3 (24)

μ t = (cpu0 · C4 + fpga0 · C5)
2

j+1

2 ·R

2B SZ

μ c = (fpga0 · fpgaj+1 · C6+

cpu0 · cpuj+1 · C7+

[fpga0 · cpuj+1 + cpu0 · fpgaj+1] · C8) ·

2
j+1

2 ·R · nResj
2B SZ

μ r = (fpgaj−1 · fpgaj+1 · C6+

cpuj−1 · cpuj+1 · C7+

[fpgaj−1 · cpuj+1 + cpuj−1 · fpgaj+1] · C8) ·

2
j+1

2 ·R · nResj
2B SZ

μj = (t1) · μ t+ (tCR) · μ c+ (t0 + tIR) · μ r (25)

As motivated by Singla et al. [18], the performance metrics

for the streaming sort application include both minimiz-

ing latency and maximizing throughput. These metrics are

normalized and combined using the standard technique of

weighted sums, as shown in Equation (26). Note that if we

optimized only the application’s throughput, given by λin,

the problem degenerates to identifying the bottleneck in the

pipeline.

minimize z = W1 · Latency +W2 ·
1

λin

,

2∑
1

Wi = 1 (26)

From queueing theory (for M/M/1 BCMP networks),

latency is given by:

Latency =
4N∑
j=0

1

μj − λj

(27)

The number of variables and constraints in the original

problem range from (50, 30) to (399, 3077) as N is increased

from 1 to 13. This corresponds to 2N = 2 to 8192 sort

blocks. Variables other than λin are integer-valued, making

the problem mixed-integer, and the objective function and

constraints are non-linear in a number of design variables.

VI. EMPIRICAL RESULTS

In this section, we will articulate the benefits of iden-

tifying a convex variable and exploiting it via convex de-

composition. We accomplish this through the use of the

sort application (and its queueing model) described in the

previous section.

z(λin) in Equation (26) is convex and the optimiza-

tion problem formulation for sort satisfies the sufficient

conditions for convex decomposition. The reduction in the

Figure 9: Branching on λin.

Figure 10: Box-whisker plot of cost function values of

1000 randomly generated configurations. Values greater

than 10,000 are excluded as outliers (extending well into

the millions).

number of branch evaluations we enjoy thanks to the convex

decomposition is illustrated in Figure 9. The figure assumes

that without convex decomposition we would branch on at

least 100 discrete values of λin.

To illustrate the breadth of possible cost function values

for this problem, Figure 10 shows a box-whisker plot of

cost function values for 1000 uniformly distributed randomly

generated configurations. The box-whisker plot shows the

minimum, 25th quartile, median, 75th quartile, and maxi-

mum (excluding outliers) for the sampled cost function val-

ues. As is clear from the figure, poorly chosen configurations

can result in very poor performance.

For the sorting application, the size of the search space

is a strong function of the allowed range for N , which

determines the maximum number of parallel sorts. For N
ranging from just 1 to 3 (i.e., 2 to 8 parallel sorts), the size of

the completely enumerated branch and bound search space

is approximately 1020 possible configurations. Using the

techniques presented earlier [3], this search space decreases

to approximately 1010 configurations, reducing by a factor

of 10 million. Convex decomposition reduces the space by

an additional factor of 100, assuming 100 discrete values

for λin, which results in a search space of approximately

108. If instead, 1000 discrete values get evaluated for λin,

the reduction would be a factor of 1000 (i.e., the reduction

is directly proportional to the discretization of the convex

variable).

While in the general case the search space size is still

exponential in the number of the design parameters, for

the sort application presented above the reduced size of the
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search space can now be searched in approximately 1 hr if

each evaluation takes no more than 10 μs.

VII. CONCLUSIONS

This paper has introduced the notion of a convex vari-

able in the context of an overall non-convex optimization

problem. For streaming applications, the data ingest rate

is a convex variable when z(λin) is convex and sufficient

conditions are identified for a convex variable to lead to

convex decomposition (providing the ability to exploit the

convex variable to reduce the size of the search space).

A proof is presented to demonstrate the fact that convex

decomposition preserves the optimality of the search results,

and a quantification of the search space size reduction is

given. These ideas are illustrated using a real-world problem

as an example, showing both the performance model and the

reduction in the size of the search space.

Future work includes: (1) an attempt to identify other

common design parameters that might be frequently con-

vex, such as clock frequency when optimizing for both

throughput and power consumption; and (2) the investigation

of other potential decomposition opportunities applicable to

streaming applications.
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