ScalaPipe: A Streaming Application Generator

Joseph G. Wingbermuehle
Roger D. Chamberlain
Ron K. Cytron

Joseph G. Wingbermuehle, Roger D. Chamberlain, and Ron K. Cytron,
“ScalaPipe: A Streaming Application Generator,” in Proc. of Symposium
on Application Accelerators in High-Performance Computing (SAAHPC),
July 2012.

Dept. of Computer Science and Engineering
Washington University in St. Louis

ScalaPipe: A Streaming Application Generator

Joseph G. Wingbermuehle, Roger D. Chamberlain, and Ron K. Cytron
Dept. of Computer Science and Engineering, Washington University in St. Louis
{wingbej,roger,cytron} @wustl.edu

Abstract—ScalaPipe is a streaming application generator for
heterogeneous platforms. By using a collection of domain-specific
languages (DSLs) embedded in the Scala programming language,
ScalaPipe allows creation of streaming applications that can run
on a variety of hardware, including traditional processors, graph-
ics processors, and field-programmable gate arrays (FPGAs). Its
application DSL allows specification of the application topology
and resource mapping. Its block DSL allows the authoring of
implementations for processing kernels, or blocks, which are used
in the streaming application. ScalaPipe makes it easy to generate,
modify, and instrument large, complex topologies and resource
mappings while also exposing optimization opportunities.

I. INTRODUCTION

The streaming approach to parallel programming is a popu-
lar programming paradigm. Examples of systems that use the
streaming approach include Auto-Pipe [6], [11], S-Net [14],
Streams-C [12], and Streamlt [29]. In the streaming paradigm,
an application is decomposed into processing kernels, or
blocks, which are connected using explicit communication
channels.

Streaming applications enjoy many of the advantages of
traditional programming paradigms [7]: the blocks of one
streaming application can be deployed in another (reuse);
and application developers need not typically be concerned
with the implementation details within a block (abstraction).
Languages that support streaming applications typically offer
further support for the pipelined nature of such applications.
For example, the buffers that must be provisioned between
blocks may be statically determined so that all blocks can
compute their outputs without deadlock [19]. Finally, because
performance is usually paramount for streaming applications,
developers are given some control over the mapping of an
application’s blocks to the resources available on a platform,
such as traditional processors, graphics processors, and field-
programmable gate arrays (FPGAs). These diverse resources
encourage a developer to consider alternative implementations
for a given application block. The exigencies of a given plat-
form then constrain how blocks communicate and influence the
performance obtained by an application under a given resource
mapping.

Extant toolsets that support the development of streaming
applications therefore provide tools for developing the blocks
of an application along with some mechanism for configur-
ing and allocating resources to those blocks on a streaming

This work is supported by the National Science Foundation under grants
CNS-09095368 and CNS-0931693.

platform. We observe that these two activities currently take
place in completely separate languages and tools. In this paper,
we point out the deficiencies of current approaches and we
examine the benefits of using a single language to realize both
activities.

Our primary basis for comparison is the Auto-Pipe
toolset [6], [11]. In Auto-Pipe, blocks are authored in a lan-
guage suitable for the deployment target. For example, a block
targeted for a traditional processor might be implemented in C
or C++ whereas a block targeted for an FPGA device might be
implemented in VHDL or Verilog. Auto-Pipe’s X coordination
language is used to specify how the blocks are to be connected
and to what resources they should be assigned. From the
X language description, the Auto-Pipe X compiler generates
the necessary run-time infrastructure to connect the blocks,
which might be on separate resources.

The Auto-Pipe coordination language approach works well
for many problems [5]. One can easily write streaming ap-
plications that run on both traditional processors and FPGA
devices simultaneously without concern for the low-level
details of data movement. However, Auto-Pipe suffers from
the following deficiencies, which we illustrate by example in
Figures 3, 4, 5, and 6:

1) Creating applications can require writing a great deal of
X code, which makes developing and maintaining such
applications tedious and error-prone. Indeed, an applica-
tion of O(n) blocks can contain O(n?) connections. The
X language is not Turing complete and serves essentially
to declare the configuration of the blocks. Because it
lacks any generative power, each connection must be
explicitly declared.! X specifications are not programs
and thus cannot be extended or proceduralized in the
manner of most programming languages.

Figure 5 shows the connections between blocks for
an implementation of Laplace’s algorithm, which we
describe in greater detail in Section V. Here we observe
that the two Walk blocks and their connections are ex-
plicitly specified. A small change to increase the number
of such blocks requires tedious changes to Figure 5. A
better approach would allow the number of such blocks
to be abstracted parametrically so that the blocks and
their connections can be automatically generated.

' An exception allows simple split-join topologies to be declared in X, but
anything that is not directly supported must be declared manually on a per-
edge basis.

2) Conceptually simple changes to the application or re-
source mapping can require many changes to the cor-
responding X language description. Figure 6 shows a
particular mapping for the Laplace application; changes
to the streaming topology or its mapping to resources
necessitate modifying the specifications in Figures 5
and 6. As with the first point, this is due to the static
nature of the X language, which requires that blocks
and connections between blocks be explicitly mapped
to resources.

3) Blocks cannot be polymorphic. The type declarations
shown in Figure 3 specify all inputs and outputs as
unsigned, 32-bit integers, but the Laplace algorithm
could operate equally well on shorter or longer integers.
In Auto-Pipe, completely separate implementations are
required to capture Laplace algorithm variations that op-
erate on integers of different sizes. A more attractive ap-
proach would allow type abstraction via polymorphism,
so that a single specification suffices. This is difficult in
Auto-Pipe because the blocks are implemented outside
of the X language.

4) Blocks must be implemented separately for each target
platform. For example, the Laplace algorithm’s Random
block may initially be implemented in C, but an im-
plementation in Verilog may be subsequently desired
for better performance. Auto-Pipe provides no common
language for block implementations, so blocks must be
re-implemented if a change in target is required. While
ScalaPipe currently makes no attempt at generating an
efficient hardware implementation and substantial algo-
rithmic changes may ultimately be imposed, the ability
to prototype an existing algorithm in hardware provides
a starting point for examining the tradeoffs between the
implementations.

5) Finally, communication overhead can become substan-
tial even for blocks that are mapped to the same re-
source. Even after colocation, the blocks must nonethe-
less marshal their communication through the blocks’
interfaces. This requirement follows from the separate
implementation and coordination languages in Auto-
Pipe.

To address the aforementioned issues, we developed a new
system, ScalaPipe, to generate applications that use Auto-Pipe
blocks as well as the Auto-Pipe blocks themselves. ScalaPipe
is a set of domain-specific languages (DSLs) embedded in
the Scala programming language [22]. Using Scala as the
host language allows for much more expressive power when
creating applications. Further, blocks implemented in the Scala
DSL can be compiled to different targets (for example, tradi-
tional processors, graphics processors, and FPGAs) to generate
families of blocks.

II. THE SCALAPIPE APPROACH

A ScalaPipe program is a Scala program that uses the
ScalaPipe domain-specific languages to generate an Auto-Pipe
application. ScalaPipe defines two main DSLs: the application

DSL and the block DSL. The application DSL is used to
connect blocks together and map them to resources. The block
DSL is used to declare and (optionally) implement the blocks.

Because the streaming application is described in a DSL
embedded in Scala, Scala language constructs can be used to
generate potentially large and complex application topologies
and resource mappings. The application DSL thus addresses
problems 1 and 2 with Auto-Pipe and the X language.

In addition to authoring the application topology and re-
source mapping, ScalaPipe allows blocks to be implemented
completely within the ScalaPipe block DSL. This allows one
to use the same block code to operate on multiple data types
and run on multiple resources. For example, in ScalaPipe it
is possible to create a polymorphic adder block that adds
together two values of any type. This block can then be used to
generate code for both general-purpose processors and FPGA
devices. For general-purpose processors, ScalaPipe generates
C code that adheres to the Auto-Pipe software block interface.
Likewise, for FPGA devices, ScalaPipe generates Verilog code
that adheres to the Auto-Pipe hardware block interface. The
block DSL thus addresses problems 3 and 4.

To address problem 5 with Auto-Pipe and X, the ScalaPipe
compiler can be enhanced to combine multiple blocks that
are connected together on the same resource. Although this
feature has yet to be implemented, such an optimization would
be possible to implement in the ScalaPipe compiler without
requiring application or block code changes. In a similar vein,
any improvements to the block code generation (for example,
optimizations) would be available for all ScalaPipe applica-
tions without requiring application or block code changes.

The ease of creating new blocks and versatile resource
mapping abilities of ScalaPipe allow the straightforward eval-
uation of alternative resource mappings. Any bottlenecks in
the application can be tracked down using a performance
monitoring system such as TimeTrial [18], which is integrated
into ScalaPipe. These bottlenecks can then be addressed by a
custom block implementation or by changing the application
topology and resource mapping.

III. BLock DSL

The ScalaPipe block domain-specific language provides a
simple imperative programming language that can be used
to implement blocks. To use the block DSL, one extends
the AutoPipeBlock class. Within the block DSL, the
inputs and outputs for the block are specified as well as
the implementation. Note that it is possible to use existing
blocks in target-specific languages such as Verilog. To use such
blocks, an external statement is used to inform ScalaPipe
of the implementation code. It is also possible to mix multiple
external implementations for various platforms as well as an
internal implementation (to be used if no matching external
implementation is available for the desired target).

A simple add block is shown in Figure 1. This block takes
two inputs, adds them together, and sends an output. For
this block, we have specified that we already have a custom
implementation available for FPGA devices. Note that the

val Add = new AutoPipeBlock {

val in0 = input (SIGNED32)
val inl = input (SIGNED32)
val out = output (SIGNED32)
external ("FPGA", "AddS32")
out = in0 + inl
}
Fig. 1. Add block.

first parameter to external is the platform and the second
parameter is the name of a directory containing the block
implementation.

A. Language Features

The block DSL features many of the standard language
constructs available in a traditional programming language
for conditionals and looping. By using a version of the Scala
compiler with language virtualization features [3], ScalaPipe
is able to use the standard Scala control structures such as if
and while. Because of this, a lot of Scala code can be easily
reused in ScalaPipe with few changes.

In addition to the basic control structures and math opera-
tors, ScalaPipe provides a rich set of data types which includes
primitive types such as integer, floating point, and fixed point
types, fixed-length arrays, and structures. Blocks that use only
these features can run on any resource that ScalaPipe supports.
To allow more flexibility and the ability to interface with
library code, ScalaPipe also allows function calls and pointer
types to be used. However, blocks that use function calls and
pointers can only be mapped to traditional processors.

B. Intermediate Representation

Before block code can be generated, it is necessary to turn
the block DSL program into an intermediate representation.
Since the block DSL is embedded in Scala, the issue of
parsing is handled automatically. The DSL code turns into
function calls where the variables in the DSL are actually
objects to represent the variables, which are created in the
input, output, and local functions. Because variables
in the block DSL are objects, Scala code and block DSL code
can be mixed allowing Scala to act as a macro language.
This is similar to lightweight modular staging introduced
in [25] where variable types determine whether an expression
is executed when the application generator runs or if the
expression is compiled into code to be executed later.

Since the Scala compiler cannot catch all possible errors that
could arise in the block code, an error reporting mechanism
is in place which captures the file name and line number so
that this information can be reported if ScalaPipe detects an
error with the block. To accomplish this, every statement in
the block DSL throws and catches an exception to determine
the current file name and line number. This allows ScalaPipe
to provide meaningful error messages.

Once the abstract syntax tree is built from the block code,
it is either used directly for code generation or converted to
a control flow graph. When generating code for traditional
processors or graphics processors, the abstract syntax tree is
used directly for code generation. However, for FPGAs, the
abstract syntax tree is first converted to a control flow graph
to enable better Verilog code generation.

C. Code Generation

For traditional processors, C code is emitted. For graphics
processors, OpenCL C [27] code is generated. Finally, for
FPGAs, Verilog is generated. Since the block language maps
easily into the C programming language, the abstract syntax
tree is used directly for generating code targeted for tradi-
tional processors. Unfortunately, generating code for graphics
processors and FPGAs requires more work.

For graphics processors, it is desirable to allow multiple
threads to run the same kernel on different data elements.
To allow this, ScalaPipe checks the block to see if there is
state that needs to be preserved across invocations. If there
is no state to be preserved, then each element in the input
queues can be processed in parallel. In this case, ScalaPipe
will generate code to process each item in the input buffer in
a separate thread. Note that this simple method for extracting
parallelism leaves much to be desired. However, it provides
a prototype for evaluating alternative resource mappings. If a
higher performance implementation is sought, it is possible to
substitute a custom implementation.

Like graphics processors, FPGAs present a problem for
automatic code generation from an imperative-style language.
To generate Verilog, the abstract syntax tree is first converted
into a control flow graph. Each vertex in the control flow
graph is then converted into a state in a state machine and the
edges become state transitions. As is the case with the graphics
processor code generation, this often results in a suboptimal
implementation. As previously mentioned, we can get around
this by a custom implementation if necessary. However, if the
implementation typically does not require many resources, it
may be possible to replicate the block many times.

IV. APPLICATION DSL

The ScalaPipe application domain-specific language is used
to connect blocks together and map them to resources. To use
the application DSL, one extends the Aut oPipeApp class.

A. Overview

The application DSL allows one to specify how blocks are
connected using functional composition. Each block takes a
list of streams for input and returns a list of streams, which
can then be passed to other blocks. To allow large and complex
topologies to be generated, Scala can be used as a type-safe
macro language.

In addition to the application topology, the application DSL
is where resource mapping is described. The map function is
used for this purpose. Given a stream or edge specification as
a parameter, the map statement marks where data flows from
one resource to another.

B. Resource Mapping

The application DSL creates a graph of blocks connected by
streams. Some streams may change resources as indicated by
a map statement. To map the blocks onto resources, ScalaPipe
first assumes all blocks are unassigned and then processes
the streams one-by-one until either all blocks are assigned a
resource or no more changes occur. If any resources remain
unmapped at this point, they are assumed to reside on a
traditional processor. Note that it is possible for an invalid
mapping to be specified. In this case, the error is reported
when the ScalaPipe application generator is run.

Once the resource mapping is complete, ScalaPipe generates
the blocks for the required resources and then creates an
application with the queues and threads necessary to run the
blocks. This application also includes any code necessary for
routing data to other devices such as graphics processors or
FPGAs. For graphics processors, ScalaPipe generates code to
use OpenCL [27] for communication and compiling of the
block code. For FPGA devices, code to communicate with the
driver for the FPGA device is generated on the software side.
On the hardware side, a top level file is generated to connect
the blocks on the FPGA device.

V. SOLUTION TO LAPLACE’S EQUATION

As an example to demonstrate ScalaPipe, we present an
application to compute the solution to Laplace’s equation.
Laplace’s equation is a second-order partial differential equa-
tion (PDE) [28] with several uses, including modeling station-
ary diffusion (such as heat) and Brownian motion. For heat,
given the temperature at the boundaries of an object, solutions
to Laplace’s equation provide the interior temperatures at
equilibrium.

There are multiple ways of solving Laplace’s equation. An
analytic solution exists for simple boundary conditions, but
for many boundary conditions, no analytic solution exists and
a numeric solution must be sought [10]. The algorithm we
present in this paper is based on a Monte Carlo technique. Al-
though provably correct [24], the algorithm converges slowly.
Nevertheless, this method is useful in situations where the
solution to only a few interior points is needed.

Our application for solving Laplace’s equation is comprised
of a Random block which computes random numbers using
the Mersenne twister algorithm [21], a Walk block which
performs random walks in the area of interest, and a Print
block to output the results. More blocks are required in the
complete implementation to configure the boundaries and area
of interest. For simplicity, these blocks are omitted in this
discussion.

One way to increase the parallelism of this application is to
distribute the n random walks among w concurrently operating
Walk blocks. To support this, we introduce two additional
block types: a Split block to divide its input among two
outputs and an Average block to average the results from
two inputs. By creating a tree of Split and Average blocks
we can vary w to be any power of two. An example with w = 2
is shown in Figure 2.

Random
|
Split
/ \

Walk Walk
\ /
Average
l
Print
Fig. 2. Distributing the work among two Walk blocks.

A. X Implementation

Before showing the ScalaPipe implementation, we first
present an implementation of the Laplace application in Auto-
Pipe’s X language. To implement the application using X, we
must first declare the blocks as shown in Figure 3. Note that
this declaration is analogous to a header file and does not
provide implementations for the blocks. The implementations
are developed separately for each kind of resource on which
the block can be deployed. Figure 4 shows how a C implemen-
tation of the blocks would be referenced in the X environment,
with the base specifying the base filename for the C source
code. Given this information, these blocks could be used on a
traditional processor, but to use the blocks on an FPGA device
we must develop an implementation for that device and we
must modify Figure 4 accordingly.

Given these block definitions, we next specify the topol-
ogy of the application as shown in Figure 5. Here we first
declare block instances, such as the two Walk blocks walk1l
and walk2. Next, the connections between the blocks are
specified. The edges carry labels so they can be referenced
in the resource mapping we describe below. Although the
connections between Split, Walk, and Average blocks
have structure, the connection specification requires that each
edge be explicitly specified. While this may be suitable for
small topologies, it becomes cumbersome for large topologies.
Further, modifying the number of Walk blocks from w = 2
to w = 4 requires changing most of the code.

After specifying the topology, we declare the available
resources and the mapping of blocks to resources as shown in
Figure 6. For illustrative purposes, we present a resource map-
ping where the Random and Print blocks are each mapped
to a separate processor and all other blocks are mapped to
the FPGA device. Because edges and block instances must be
explicitly mapped, this approach can become unwieldy and
error-prone as the number of blocks and complexity of the
mapping increases.

block Random {
output UNSIGNED32 y;
}i

block Split {
input UNSIGNED32 x0;
output UNSIGNED32 y0;
output UNSIGNED32 yl;
}i

block Walk {
input UNSIGNED32 x0;
output UNSIGNED32 yO0;
i

block Average {
input UNSIGNED32 x0;
input UNSIGNED32 x1;
output UNSIGNED32 yO;
}i

block Print {
input UNSIGNED32 x0;
}i

Fig. 3. X block declarations.

platform C_x86 ({
impl Random (base="Random") ;
impl Split (base="Split");
impl Walk (base="Walk");
impl Average (base="Average");
impl Print (base="Print");

i

Fig. 4. X block implementation references.

block top {
Random rand;

Split split;

Walk walkl;

Walk walk2;

Average avg;

Print print;
el: rand -> split;
e2: split.y0 -> walkl;
e3: split.yl —-> walk2;
ed: walkl -> avg.x0;
eb: walk?2 -> avg.x1l;
eb6: avg -> print;

i

Fig. 5. Topology of the Laplace application in X.

resource proc[2] is C_x86 {
(file="proc_1_.cpp", cpunum=0),
(file="proc_2_.cpp", cpunum=1)

}i

resource fpga is HDL;

resource interconnect is DMA;

map fpga = { app };

map proc[l] = { app.rand };

map proc[2] = { app.print };

map interconnect = { app.el, app.e2 };

Fig. 6. X resource mapping.

B. ScalaPipe Blocks

The blocks used in the ScalaPipe version of the Laplace
application provide the same functionality as those in the X
version. However, in the ScalaPipe version, the blocks are
implemented completely in ScalaPipe using the block DSL. To
save space, we show code only for the Random and Average
blocks in Figures 7 and 8.

The Random block shows the ease with which blocks
can be implemented or prototyped in ScalaPipe. This block
declares an output parameter, out, and several local state pa-
rameters. The body of the Random block demonstrates several
features of the ScalaPipe block DSL including conditionals
and loops. When run, the Random block will initialize its
internal state and then output random values until the program
is terminated.

The code within a block can be thought of as executing in a
continuous loop. Each time an input port is referenced, a new
value is expected. If no input is available, the block will wait
for a value. Likewise, each time an output port is assigned, a
new value is enqueued for the consumer block (execution will
block if the queue is full). Blocks that require no inputs, such
as our Random block, run continuously until they execute a
stop statement or the program terminates.

The Average block in Figure 8 is an example of a
polymorphic block capable of working with multiple data
types. The parameter to the constructor of this block, ¢, is
of type AutoPipeType, which is the base class for all data
types in ScalaPipe. The Average block can thus operate on
any valid ScalaPipe type for which the + and / operators
are defined. The Average block reads its inputs (blocking
if necessary), averages them, and then outputs the averaged
values. The process then repeats as long as the block has input.

To create an instance of the Average block that can
operate on 32-bit unsigned integers, we simply specify:

val AverageU32 = new Average (UNSIGNED32)

Here we only give a glimpse of the capabilities of the
ScalaPipe block DSL. The block DSL supports many more
features, including a full array of operators and data types
as well as support for calling external functions. Provided
external functions are not used, all of the supported features of

val Random

val out

= new AutoPipeBlock {

= output (UNSIGNED32)

class Average (t: AutoPipeType)

extends AutoPipeBlock {

val mt =
local (new AutoPipeArray (UNSIGNED32,

624))

val index = local (UNSIGNED32, 0)
val configured = local (BOOL, O0)
val i
val j = local (UNSIGNED32)
val y

local (UNSIGNED32, randSeed)

local (UNSIGNED32)

(configured) {

if (index == 624) {
i=20
while (i < 624) ({
J=1i+1
if (3 == 624) {
3 =20
}
y = mt (i) >> 31
y += mt (j) & OxXT7FFFFFFF
3 =1 4+ 397
if (3 > 623) {
J —= 624
}
mt (1) = mt (3J) (y >> 1)
if (y & 1) |
mt (i) "= 0x9908b0df
}
i +=1
}
index = 0
}
y = mt (index)
y "= (y >> 11)
y "= ((y << 7) & 0x9d2c5680)
y "= ((y << 15) & 0xefc60000)
y "= (y >> 18)
index +=
out =y
} else {
mt (index) = i
i = 0x6c078965 % (1 ~ (i >> 30))

i += index

index += 1

if (index == 624)
configured =1

{

Fig. 7. Random block.

val in0 = input (t)
val inl = input (t)
val out = output (t)
out (in0 4+ inl) / 2

Fig. 8. Average block.

val Laplace = new AutoPipeApp {

val random = Random ()
val splits = random.iteratedMap (
levels, SplitU32)

val walks =
Array.tabulate (1l << levels) {
x => Walk (splits(x)) ()

val result = iteratedFold(walks,
AverageU32)

Print (result)

Fig. 9. Laplace application.

the block DSL can be compiled to C, OpenCL C, or Verilog
as required.

C. ScalaPipe Application Topology

The code for creating the topology for the Laplace ap-
plication is shown in Figure 9. Here we use the blocks we
previously defined. Each time we use function application on
a block (for example, Random ()), a new instance of that
block is created. The inputs to the block are arguments to the
function application and the outputs are the return value.

There are two Scala functions of interest in this exam-
ple: iteratedMap and iteratedFold. By using these
functions, we can create trees of Split and Average
blocks of arbitrary depth. Therefore, rather than explicitly
creating the blocks and linking them together as in X, we
are generating the application topology. The iteratedMap
and iteratedFold functions are Scala functions that were
implemented for ScalaPipe to make generating such topologies
easier.

In addition to the functions that ScalaPipe provides for
generating topologies, it is also possible to create custom func-
tions. As a simple example, consider a block that increments
an integer. We could use this block to add five to an integer
by creating a pipeline of five Increment blocks as shown
in Figure 10. However, we note that doing this manually not

val plusOne Increment (source)
val plusTwo = Increment (plusOne)
val plusThree = Increment (plusTwo)
val plusFour = Increment (plusThree)
val result = Increment (plusFour)

Fig. 10. Increment pipeline.
def pipeline(s: Stream,

b: AutoPipeBlock,

n: Int): Stream = {

if (n > 0) {

pipeline(b(s), b, n - 1)
} else {
S
}
}
Fig. 11. Function for creating pipelines.

only requires a lot of code, but it also prevents us from easily
switching to a different pipeline length.

To allow us to create such pipelines of arbitrary length,
we can write a function to do it for us. A function to create
a pipeline of length n is shown in Figure 11. This function
takes a stream, s, as input and a block, b. It then creates a
pipeline n long. Figure 12 shows the updated program to take
advantage of this function.

Not only is it possible to use functions specific to ScalaPipe
programs for topology or block generation, but we can also
use functions from the Scala standard library. For example,
in Figure 9, we use the Array.tabulate function, which
creates an array of the specified length by executing a function
for each element. In this case, we use Array.tabulate to
create the Walk block instances.

D. ScalaPipe Resource Mapping

ScalaPipe takes an aspect-oriented [16], [17] approach to
resource mapping. That is, the resource boundaries are speci-
fied as an edge between two blocks and the type of resource
movement is indicated. In Figure 13, the first map statement
states that all edges out of a Random block move from a
traditional processor to the first FPGA device. Note that the
special block ANY_BLOCK is used to match any block. The
second statement states that all edges going to the Print
block move from an FPGA to the second processor (CPU
number 1). For comparison purposes, the X resource mapping
equivalent to the ScalaPipe resource mapping in Figure 13 is
shown in Figure 6.

val result = pipeline (source,

Increment, 5)

Fig. 12. Updated increment pipeline.

map (Random —-> ANY_BLOCK, CPU2FPGA())
map (ANY_BLOCK -> Print, FPGA2CPU(id = 1))

Fig. 13. ScalaPipe resource mapping.

In addition to the resource mapping shown here, other types
of mappings are possible. For example, by specifying -1 as the
CPU ID, for each edge that the resource mapping matches, a
new, unused processor will be used. Also, to allow for cases
where an aspect-oriented approach is awkward, it is possible to
specify the output of a block instead of an edge (for example,
result in Figure 9).

E. Evaluation

With the application implemented completely in ScalaPipe,
we can now evaluate its performance with various numbers of
Walk blocks on different resources. Our tests are performed
on a Linux system with two six-core AMD processors running
at 2.6 GHz. This system also includes two custom FPGA
boards connected to the PCI-X bus. Each FPGA board contains
two Xilinx Virtex-4 FPGAs.

We first run the simple version of the Laplace application
with one Walk block on a single processor core. The program
takes 101 seconds to generate the output shown in Figure 14.
At this point, there are many possible ways to exploit the
parallel nature of the problem. However, due to the availability
of an FPGA device, we will illustrate its use. In ScalaPipe,
we could just as easily use multiple traditional processors or
even multiple machines in a cluster. In practice, the decision
of whether to use an FPGA or a traditional processor would
likely be guided by performance and how other parts of
the application are mapped. Nevertheless, because ScalaPipe
generates the code for the blocks, moving the processing to
an FPGA device requires little effort. To move the processing
to the FPGA device, we insert the following map statement
into the application:

map (ANY_BLOCK -> Print, FPGA2CPU())

Running the application again, we discover that, unfortu-
nately, we have increased the running time to 579 seconds.
This is not too surprising since we have yet to modify the
application to take advantage of the FPGA device. Note that
the HDL code that ScalaPipe generates is functionally correct,
but ScalaPipe currently makes no attempt to optimize it.
Instead, ScalaPipe creates a state machine to execute the block
code sequentially.

There are many things we could attempt to speed up
the program, but we do not know where the bottleneck is.
Therefore, we use TimeTrial [18] which is integrated into
ScalaPipe. TimeTrial instruments the queues between blocks
of a streaming application to report information such as queue
occupancy, data rate, and backpressure. Using TimeTrial in
ScalaPipe works much like resource mappings: an edge is
specified along with the desired measurement. The following
statement is used to instrument the edge between the Random
block and the Walk block:

Fig. 14. Output of the Laplace program.

measure (Random —-> ANY_BLOCK,
"backpressure)

Running the program again, we see that there is backpres-
sure 90% of the time. This indicates that the Wa 1k block is the
bottleneck. One way to speed up the Walk block is to divide
the load among multiple Walk blocks. As coded, this can
be accomplished by changing the levels parameter shown in
Figure 9. We arbitrarily select 4, which gives us 2* = 16 Walk
blocks. We leave the TimeTrial measurement in the program,
which will now report the backpressure between the Random
block and the first Split block.

After modifying the program to use 16 Walk blocks,
the execution time of the program drops from 579 seconds
to 102 seconds. This is a speedup of about 5.7x over the
previous run on the FPGA device and about on par with the
implementation on a traditional processor. Although we are
heading in the right direction, we might have hoped for a 16x
speedup because we are now using 16 Walk blocks. Looking
at the TimeTrial measurement of the backpressure between the
Random block and the first Sp1it block reveals that the edge
has backpressure only 3% of the time. This indicates that the
Random block is now the bottleneck.

Up until this point, we have implemented the entire appli-
cation using only ScalaPipe. That is, there is no custom HDL
in use. However, because we now know that the Random
block is the bottleneck, we suspect a custom implementation
of that block may provide the desired performance. Therefore,
we point ScalaPipe to a custom implementation in Verilog
(described in [26]) using an external statement. Using the
custom block implementation, the application now takes 33
seconds, which is more than the 16x speedup we were seeking
by moving to 16 Walk blocks and 3.1x faster than the original
program on a single processor.

Now the Walk blocks are again the bottleneck. To improve
the performance even further, we could add more Walk blocks
or use a custom Walk block implementation. There is ample
logic space on the FPGA device to accommodate more Walk

blocks, but the block RAM resources are a limiting factor. This
is because there is a buffer for every edge between blocks. The
fact that the Split blocks are arranged in a tree means that
there are many buffers that probably are not needed. We could
address this manually by creating a split block with more than
2 outputs. Indeed, we could even use Scala to generate the
block with the required number of outputs. However, assuming
that we have met our performance goal, we stop here.

F. Discussion

By using ScalaPipe, we easily developed this application
and isolated bottlenecks in its implementation. After isolating
the bottlenecks, ScalaPipe allowed us to change the topol-
ogy and focus only on improving those blocks that actually
mattered to obtain our performance goal. In addition, because
most of the blocks used in this application take a parameter to
specify their type, the whole application could be modified
to work with 64-bit values instead of 32-bit values with
very few changes. In X, we would have to develop separate
implementations and extensively modify the descriptions of
the blocks.

An advantage to ScalaPipe that is not made explicit in the
Laplace application is the code savings one obtains by using
ScalaPipe to generate blocks instead of writing the blocks by
hand. In ScalaPipe, one need not worry about the boiler-plate
code that is necessary for Auto-Pipe blocks implemented in C
or an HDL. This combined with the fact that the same block
in ScalaPipe can be used to generate code for both traditional
processors and FPGAs as well as for multiple data types means
that the code savings can be substantial. Further, by having
only a single block implementation, any changes to that block
need to only happen in one place.

Although the code that ScalaPipe generates for blocks
mapped to FPGAs is not optimized, the fact that we are able to
easily explore the use of FPGAs is useful. We are able to move
large parts of the application to an FPGA without writing any
HDL code and then concentrate on only those blocks which
prevent us from meeting our performance goals. In the future,
it is conceivable that an improved Verilog code generator or
the incorporation of an existing HDL code generation tool into
ScalaPipe would make custom HDL code unnecessary in even
more cases.

As we have shown, ScalaPipe is capable of generating
multiple forms of code. From the application DSL, ScalaPipe
generates the necessary wrappers to tie the blocks together
and communicate with the various resources. From the block
DSL, ScalaPipe can generate C code for blocks mapped to
traditional processors, OpenCL C code for blocks mapped to
graphics processors, and Verilog code for blocks mapped to
FPGA devices.

Since the Scala language is used to generate the application
topology, for a particular program, the amount of X code
required for an equivalent program in Auto-Pipe is unbounded.
For example, an Auto-Pipe version of the Laplace application
requires 69 lines of X code when two walk blocks are used.
With 64 walk blocks this number increases to 503 lines. Both

of these numbers are greater than the core of the ScalaPipe
code used to describe the application, which is only about
10 lines. Note that the X code used for comparison does not
contain extra white space or comments.

As far as block code generation is concerned, in addition
to allowing code reuse, there is a significant amount of code
savings for using internal blocks. The savings comes primarily
from the fact that the boiler-plate code required for blocks and
the interactions with the Auto-Pipe block interface are implicit
in the internal block language. It should be noted that the
savings can become less significant as the complexity of the
block increases, however, we can still obtain a benefit from
having a single, polymorphic implementation for multiple
target platforms. As an example of the code savings, for the
Average block shown in Figure 8, the ScalaPipe description
is 9 lines (1 line for the actual implementation). The generated
C code, on the other hand, is 74 lines and the generated
Verilog code is 88 lines. Although a custom implementation
of the Average block may be slightly shorter, an order of
magnitude gain for such a simple block seems unlikely.

VI. RELATED WORK

There is a vast body of related work spanning everything
from streaming programming systems to high-level synthesis
tools.

Streamlt [29] is a language with a Java-like syntax for creat-
ing streaming applications. There are a few notable differences
between Streamlt and ScalaPipe or Auto-Pipe. First, StreamlIt
generates applications which run on traditional processors
whereas Auto-Pipe is designed for heterogeneous platforms.
Further, Streamlt puts restrictions on the application topology
using pre-defined fork and join mechanisms. Like ScalaPipe,
Streamlt computation kernels and coordination are specified in
the same language. However, unlike ScalaPipe, Streamlt is a
completely new language whereas ScalaPipe is a library built
on top of Scala.

Optimus [15] is tool for compiling a streaming application
into a hardware implementation. Optimus focuses more on the
way streaming applications are mapped into hardware than on
the source language, for which it uses Streamlt [29]. Unlike
ScalaPipe or Auto-Pipe, Optimus targets only hardware rather
than heterogeneous platforms.

Spidle [8] is a DSL for streaming applications. Spidle has
goals similar to Streamlt. The use of a DSL to generate C
code is similar to ScalaPipe, but Spidle lacks support for
heterogeneous platforms.

Streams-C [12] is in many ways like ScalaPipe. Like
ScalaPipe, Streams-C allows one to construct streaming ap-
plications by writing code in a high-level language that can
compile to either traditional processors or FPGAs. However,
unlike ScalaPipe, Streams-C uses comments embedded in
the code for the application topology and resource mapping,
whereas in ScalaPipe, the mapping and topology is generated
using a DSL. Thus, the ScalaPipe approach has the advantage
of allowing programmatic resource mapping and topology
generation.

Merge [20] is a framework for heterogeneous multi-core
systems. Merge provides a library-based approach for using
heterogeneous systems based on MapReduce [9]. The Merge
framework targets traditional processors and graphics proces-
sors. Although one can think of ScalaPipe as a library or
framework, ScalaPipe uses this library to actually generate
code for the target architecture.

Although Chafi et al. outline the use of DSLs embedded in
Scala as an approach to utilizing heterogeneous systems [4],
they focus on the use of a system called Delite which serves
as an execution engine for DSLs. ScalaPipe, on the other
hand, generates a complete application that can run outside
of the Scala environment. Further, ScalaPipe uses two distinct
DSLs: one to provide a general-purpose language for authoring
blocks and a second for linking blocks together and assigning
them to resources.

Lime [1] is a Java-compatible programming language that
targets heterogeneous architectures including traditional pro-
cessors and FPGAs. Lime allows the expression of many forms
of parallelism rather than enforcing a particular model such as
streaming, which is done in ScalaPipe. The Lime run-time
system then attempts to dynamically partition the program
onto the available resources.

Kiwi [13] is a system for converting C# programs into HDL.
Kiwi uses existing concurrency and synchronization constructs
to determine the parallelism in programs. Like ScalaPipe,
the approach taken by Kiwi allows the same code to be
used for both traditional processors and FPGAs. However,
whereas Kiwi attempts to exploit parallelism from concurrency
and synchronization primitives, ScalaPipe exploits parallelism
from the streaming decomposition of the program.

The Open Component Portability Infrastructure
(OpenCPI) [23] is a framework to simplify programming for
heterogeneous processing environments including traditional
processors, graphics processors, FPGAs, and digital signal
processors. OpenCPI provides a component based architecture,
where each component is reminiscent of a block in ScalaPipe.
These blocks are specified in a language, or authoring model,
which is appropriate for their target architecture. These
components are then composed using either an application
control interface or an XML specification. Unlike ScalaPipe,
however, OpenCPI does not provide a way to specify
components in a unified language for deployment to multiple
targets.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented ScalaPipe, which is a collection
of domain-specific languages embedded in Scala for gen-
erating streaming applications on heterogeneous platforms.
ScalaPipe allows large complex topologies and resource map-
pings to be generated and modified easily without substantial
changes to the application source code. Further, ScalaPipe
allows blocks to be implemented either directly in ScalaPipe or
externally. By implementing a block directly in ScalaPipe, the
same source code can be used for different data types. Because
ScalaPipe is capable of compiling blocks to C, OpenCL C,

and Verilog, the same source code can also target multiple
platforms as needed.

An example application for solving Laplace’s equation was
used to demonstrate the ease with which such an application
can be developed and modified. As shown, the combination
of ScalaPipe with TimeTrial allows one to evaluate alternative
resource mappings and topologies easily without wasting time
on custom block implementations that may provide little
benefit. Thus, through the use of TimeTrial statements in
ScalaPipe, we were able to go from a simple traditional pro-
cessor implementation to an FPGA implementation with better
performance using only a single custom block implementation.

Future work will consider more optimizations for the gen-
erated C and Verilog code. Although the C code generation
is fairly straightforward, the C blocks could be optimized to
process multiple data items at a time. Also, because ScalaPipe
produces the block code for internal blocks, ScalaPipe could
combine adjacent internal blocks that target the same resource
to avoid the overhead of the queues between blocks and expose
any cross-block optimizations that may be possible. As far
as the Verilog code generation is concerned, there is ample
opportunity for more efficient code generation. This could
be accomplished either by improving ScalaPipe itself or by
leveraging existing tools such as DWARV [31], LegUp [2], or
ROCCC [30].

REFERENCES

[1] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime: a Java-
compatible and synthesizable language for heterogeneous architectures,”
in Proc. of ACM Int’l Conf. on Object Oriented Programming Systems,
Languages, and Applications, 2010, pp. 89-108.

[2] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: high-level synthesis for FPGA-
based processor/accelerator systems,” in Proc. of 19th ACM/SIGDA Int’l
Symp. on Field Programmable Gate Arrays, Feb. 2011, pp. 33-36.

[3] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan,
M. Odersky, and K. Olukotun, “Language virtualization for hetero-
geneous parallel computing,” in Proc. of ACM Int’l Conf. on Object
Oriented Programming Systems, Languages, and Applications, 2010, pp.
835-847.

[4] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and
K. Olukotun, “A domain-specific approach to heterogeneous paral-
lelism,” in Proc. of 16th ACM Symp. on Principles and Practice of
Parallel Programming, 2011, pp. 35-46.

[5] R. D. Chamberlain, J. Buhler, M. A. Franklin, and J. H. Buckley,
“Application-guided tool development for architecturally diverse com-
putation,” in Proc. of ACM Symp. on Applied Computing, Mar. 2010,
pp. 496-501.

[6] R. D. Chamberlain, M. A. Franklin, E. J. Tyson, J. H. Buckley,
J. Buhler, G. Galloway, S. Gayen, M. Hall, E. B. Shands, and N. Singla,
“Auto-Pipe: Streaming applications on architecturally diverse systems,”
Computer, vol. 43, no. 3, pp. 42-49, Mar. 2010.

[7]1 R. D. Chamberlain, J. M. Lancaster, and R. K. Cytron, “Visions
for application development on hybrid computing systems,” Parallel
Computing, vol. 34, no. 4-5, pp. 201-216, May 2008.

[8] C. Consel, H. Hamdi, L. Réveillere, L. Singaravelu, H. Yu, and C. Pu,
“Spidle: a DSL approach to specifying streaming applications,” in
Proc. of 2nd Int’l Conf. on Generative Programming and Component
Engineering, 2003, pp. 1-17.

[9] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on

large clusters,” Commun. ACM, vol. 51, pp. 107-113, Jan. 2008.

S. J. Farlow, Partial Differential Equations for Scientists and Engineers.

Dover Publications, 1993.

(10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

M. A. Franklin, E. J. Tyson, J. Buckley, P. Crowley, and J. Maschmeyer,
“Auto-Pipe and the X language: A pipeline design tool and description
language,” in Proc. of Int’l Parallel and Distributed Processing Symp.,
Apr. 2006.

M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski, “Stream-
oriented FPGA computing in the Streams-C high level language,”
in Proc. of IEEE Symp. on Field-Programmable Custom Computing
Machines, Apr. 2000, pp. 49-56.

D. Greaves and S. Singh, “Kiwi: Synthesis of FPGA circuits from
parallel programs,” in Proc. of 16th Int’l Symp. on Field-Programmable
Custom Computing Machines, 2008, pp. 3—12.

C. Grelck, S.-B. Scholz, and A. Shafarenko, “A gentle introduction
to S-Net: Typed stream processing and declarative coordination of
asynchronous components.” Parallel Processing Letters, vol. 18, no. 2,
pp. 221-237, 2008.

A. Hormati, M. Kudlur, S. Mahlke, D. Bacon, and R. Rabbah, “Optimus:
efficient realization of streaming applications on FPGAs,” in Proc. of
Int’l Conf. on Compilers, Architectures and Synthesis for Embedded
Systems, 2008, pp. 41-50.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold, “An overview of Aspect],” in ECOOP 2001 — Object-Oriented
Programming, 2001, vol. 2072, pp. 327-354.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP’97
— Object-Oriented Programming, 1997, vol. 1241, pp. 220-242.

J. M. Lancaster, J. G. Wingbermuehle, and R. D. Chamberlain, “Asking
for performance: Exploiting developer intuition to guide instrumentation
with TimeTrial,” in Proc. of IEEE 13th Int’l Conf. on High Performance
Computing and Communcations, Sep. 2011, pp. 321-330.

P. Li, K. Agrawal, J. Buhler, and R. D. Chamberlain, “Deadlock
avoidance for streaming computations with filtering,” in Proc. of 22nd
ACM Symp. on Parallelism in Algorithms and Architectures, Jun. 2010,
pp. 243-252.

M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge: a
programming model for heterogeneous multi-core systems,” SIGPLAN
Not., vol. 43, pp. 287-296, March 2008.

M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Trans. Model. Comput. Simul., vol. 8, pp. 3-30, Jan. 1998.
M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud,
N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger, “An overview
of the Scala programming language,” Ecole Polytechnique Fédérale de
Lausanne, Tech. Rep. 1C/2004/64, 2004.

“OpenCPI - open componenet portability infrastructure,” http://www.
opencpi.org.

J. F. Reynolds, “A proof of the random-walk method for solving
Laplace’s equation in 2-D,” The Mathematical Gazette, vol. 49, no. 370,
pp. 416420, Dec. 1965.

T. Rompf and M. Odersky, “Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs,” in Proc. of
9th Int’l Conf. on Generative Programming and Component Engineer-
ing, 2010, pp. 127-136.

N. Singla, M. Hall, B. Shands, and R. D. Chamberlain, “Financial
Monte Carlo simulation on architecturally diverse systems,” in Proc.
of Workshop on High Performance Computational Finance, Nov. 2008.
J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
and Engineering, vol. 12, pp. 66-73, 2010.

W. A. Strauss, Partial Differential Equations: An Introduction.
1992.

W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamlIt: A language
for streaming applications,” in Proc. of 11th Int’l Conf. on Compiler
Construction, 2002, pp. 179-196.

J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing modular
hardware accelerators in C with ROCCC 2.0,” in Proc. of IEEE Symp. on
Field-Programmable Custom Computing Machines, 2010, pp. 127-134.
Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu, and
S. Vassiliadis, “DWARV: Delftworkbench automated reconfigurable
VHDL generator,” in Int’l Conf. on Field Programmable Logic and
Applications, Aug. 2007, pp. 697-701.

Wiley,

