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ABSTRACT

Because main memory is many times slower than modern
processor cores, deep, multi-level cache hierarchies are ubiqg-
uitous in computers today. Similarly, applications deployed
on ASICs and FPGAs are often hindered by slow external
memories. Therefore, to achieve good performance, hard-
ware designers must optimize main memory usage. Unfor-
tunately, this process is often labor intensive and fails to ex-
plore the full range of potential memory designs. To address
this issue for applications expressed in a streaming manner,
we show that it is possible to generate automatically a su-
peroptimized memory subsystem that can be deployed on an
FPGA such that it performs better than a general-purpose
memory subsystem. Rather than explore only simple mem-
ory subsystems, our superoptimizer is capable of exploring
extremely complex designs consisting of multi-level caches
and other components. Finally, we show that it is pos-
sible to deploy applications with superoptimized memory
subsystems with minimal additional effort while achieving
significant performance improvements over a naive memory
subsystem.

Categories and Subject Descriptors

B.6.3 [Logic Design]: Design Aids; B.3.2 [Memory Struc-
tures|: Design Styles

1. INTRODUCTION

Due to the large disparity in performance between main
memory and processor cores, large cache hierarchies are a
necessary feature of modern computer systems. By exploit-
ing locality in memory references, these cache hierarchies at-
tempt to reduce the amount of time an application spends
waiting on memory accesses. Although cache hierarchies are
most common, one can extend this notion to a generalized
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on-chip memory subsystem, which acts as an interface be-
tween the computation elements and off-chip main memory.

For general-purpose computers, memory subsystems are
designed to have the best performance across a large range
of applications. However, due to the general-purpose nature
of these memory subsystems, such a memory subsystem may
not be optimal for a particular application. Because of the
potential performance benefit with a custom memory sub-
system, we propose the use of memory subsystems tailored
to a particular application. Such custom memory subsys-
tems have been used for years for applications deployed on
ASICs and FPGAs [3,10,19]. Further, it is conceivable that
general-purpose computer systems may one day be equipped
with a more configurable memory subsystem if the config-
urability provided enough of a performance advantage.

Although selecting the parameters for custom cache hier-
archies optimally is an active area of research, most previ-
ous work focuses on a fixed topology. Recently, superopti-
mization has been employed to expand the search space for
memory subsystems to contain multiple memory subsystem
components such as caches, scratchpads, and address trans-
formations, allowing for these components to be combined
arbitrarily [27]. However, that work only considers single-
threaded applications. Here we extend that work by consid-
ering custom memory subsystems for pipelined, streaming
applications.

Streaming is a parallel programming paradigm in which
application kernels communicate over fixed communication
channels. The streaming paradigm is used in systems such as
ScalaPipe [26] and Streamlt [23], among many others [4,21].
Within the streaming paradigm, conceptually, each kernel
has its own independent memory address space. Commu-
nication between kernels is performed via communication
channels implemented as FIFO buffers. Unlike a single-
threaded application, which has a single memory subsystem
to optimize, a streaming application can potentially have a
separate memory subsystem for each kernel. In addition,
each communication channel or FIFO between kernels is yet
another memory subsystem to be optimized.

The concept of superoptimization was introduced with the
goal of finding the smallest instruction sequence to imple-
ment a function [15]. This differs from traditional program
optimization in that superoptimization attempts to find the
best sequence at the expense of a potentially long search pro-
cess rather than simply improving code. In a similar vein,
we are interested in finding the best memory subsystem at
the expense of a potentially long search process rather than
a generic memory subsystem.



Traditionally, superoptimizers have used exhaustive search;
however, exhaustively searching for the best memory subsys-
tem would be prohibitively time-consuming. This is because
in evaluating a particular memory subsystem, we simulate
an address trace from the application. Due to the size of
these traces, the simulation time can be extremely time con-
suming. Therefore, as in [20] and [27], we use a stochastic
search technique instead of exhaustive search.

Due to the number of memory subsystems in a streaming
application, the already complex problem of superoptimiz-
ing a single-threaded address trace is compounded. This is
because, in addition to a shared resource constraint, the per-
formance of one kernel can affect another both directly, by
moving the bottleneck, and indirectly, by consuming exces-
sive main memory bandwidth. Thus, we use a heuristic to
guide the search to those memory subsystems that are most
likely to benefit the application.

To evaluate our superoptimized memory designs, we tar-
get an FPGA with an external LPDDR main memory. The
FPGA device is a Xilinx Spartan-6 LX45 clocked at 100 MHz.
The external LPDDR is a 512 Mib device clocked at 100 MHz.
All memory subsystems share access to the external LPDDR
memory device. The Spartan-6 LX45 has 116 block RAMs
(BRAMS), which we use to implement our custom memory
subsystems. FEach BRAM is 18 Kib, providing a total of
2,088 Kib on-chip memory.

By evaluating our applications on a physical device, we
show that it is possible to achieve real performance improve-
ments over a generic memory subsystem with minimal extra
effort.

2. RELATED WORK

Here we extend the work on superoptimized memory sub-
systems for single-threaded applications [27] by consider-
ing streaming applications. Further, we show actual per-
formance improvements for applications implemented on an
FPGA device in addition to simulated reductions in execu-
tion time.

There is related work in making off-chip memory easier
to use. LEAP scratchpads [1] provide a portable memory
abstraction for hardware kernels. These memory abstrac-
tions may contain caching and can be backed by a larger
main memory. CoRAM [6] is a technology similar to LEAP
scratchpads, but lower-level, that provides an SRAM-style
interface to memory. Unlike block RAM resources embed-
ded in the FPGA, however, CoRAMs can be backed by a
larger main memory. Both LEAP scratchpads and CoRAMs
provide a similar function to our memory subsystem gener-
ator. However, unlike these works, we are concerned with
automatic discovery of memory subsystems rather than an
explicit description.

Prefetching [29] has been considered to improve the per-
formance of applications deployed on an FPGA when com-
bined with a memory abstraction such as LEAP scratchpads
or CoRAM. Unlike our work, that prefetching mechanism is
generic and dynamically discovers strided accesses.

MPack [24] attempts to optimize the packing of data into
block RAM resources. In our work we do not consider pack-
ing multiple subsystem components, though doing so could
allow for a higher utilization of block RAM resources.

Another source of related work comes from the automatic
selection of cache parameters. Such optimization has been
demonstrated for single-level caches [9] and two-level cach-
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es [10,11]. In addition, there have been approaches to chang-
ing certain cache parameters dynamically [2,22,25]. How-
ever, these techniques do not consider the potential for a
more complex memory subsystem.

An approach to optimizing both the computation and
communication between kernels in streaming applications
is presented in [7]. In [28], an approach to improving the
memory behavior for FPGA applications implemented in a
high-level language such as C or C++ is presented. Unlike
these works, we treat the computation as fixed, but consider
a wider search space for memory subsystems.

Finally, non-traditional memory subsystems, such as vic-
tim caches [13], combinations of caches and scratchpads [18,
19], and split caches [17] have been considered. However,
these techniques represent specific modifications to the mem-
ory subsystem that are intended to be generic rather than
customized for a particular application.

3. METHOD

Given an application to be deployed on either an ASIC or
FPGA, the process to create a custom memory subsystem
consists of several steps. First, the design without a memory
subsystem is evaluated to determine what ASIC or FPGA
resources are not used and, therefore, available for the mem-
ory subsystem. Next, an address trace is gathered for a sin-
gle run of the application. This address trace is then fed
into the memory subsystem superoptimizer, which proposes
memory subsystems and simulates them to determine their
performance. Finally, the memory subsystem generator is
used to generate a custom HDL design for the application
to use.

3.1 Address Traces

To superoptimize a memory subsystem, we first require
an address trace. Unlike single-threaded address traces, we
require a separate trace per kernel (note that each kernel
has its own memory subsystem). In addition, communica-
tion between kernels must be recorded to allow us to model
accurately the parallel kernels and optimize the size of the
FIFOs between the kernels. Finally, some notion of the com-
putation time between memory accesses must be recorded
to predict accurately how long each kernel will run relative

to other kernels.
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Figure 1: Split-Join Topology

Consider the simple streaming application topology shown
in Figure 1. The vertices of the graph represent kernels and
the edges represent communication channels. Here we have
four kernels (A, B, C, and D) where kernel A produces data on
two channels (1 and 2) and kernel D consumes data on two
channels (3 and 4).

Each kernel has a separate address trace. For example,
the trace for kernel B might look something like:



Component | Description

Parameters (n € Z4)

| Latency (cycles)

Line size (27)
Line count (2")
Cache Parameterizable cache Associativity (1...line_count) 3
Replacement (LRU, MRU, FIFO, PLRU)
Write policy (write-back, write-through)
FIFO FIFO implemented in BRAM | Depth (27) 1
Offset Address offset Value (£n) 0
Prefetch Stride prefetcher Stride (+n) 0
Rotate Rotate address transform Value (£n) 0
Scratchpad | Scratchpad memory Size (27) 2
Split Split memory Location (n) 0
XOR XOR address transform Value (n) 0
Table 1: Memory Subsystem Components
Consume an element from channel 1 Parameter | Description | Value
Read 4 bytes from address 0x1234 Frequency | DRAM I/O frequency 100 MHz
Perform a computation taking 8 cycles CAS Cycles to select a column 3
Write 8 bytes to address 0x200 RCD Cycles from open to access 3
Produce an element on channel 3 RP Cycles required for precharge 3
Recording the interaction over the communication chan- Page size | Size of a page in bytes 1024
nels as produce and consume allows the superoptimizer to Page count | Number of pages per bank 8192
size the the FIFOs used for the communication channels Width Channel width in bytes 2
without affecting correctness of the application, provided Burst size | Number of columns per access 8
the FIFOs are at least as large as the application requires. Page mode | Open or closed page mode closed
Although recording an address trace for split kernels (such DDR Double data rate true

as kernel A in Figure 1) and join kernels (such as kernel D)
would provide a valid trace, such a trace may not give the
superoptimizer sufficient freedom to size the FIFOs. For
example, if kernel A were a load balancer, it might output
more items to one channel than the other depending on its
ability to write to the channel. To handle such situations,
our simulator is capable of modeling certain split and join
kernels intrinsically without using an address trace.

There are several ways to obtain address traces. Because
our benchmarks are implemented in ScalaPipe, we modified
ScalaPipe to have the ability to dump an address trace for
kernels mapped to processor cores. This allows us to run
the application first on general-purpose processor cores to
gather the address traces. After an address trace is gath-
ered, the application can be mapped to an FPGA device for
deployment.

An additional benefit to using ScalaPipe to gather the
traces is that, since ScalaPipe is capable of high-level syn-
thesis, we can also record the number of cycles that the com-
putation will take between memory accesses in the address
trace. This information allows the superoptimizer to divide
the memory resources among the kernels more effectively.

For benchmarks not implemented in ScalaPipe, it is pos-
sible to instrument the application manually to generate
the required trace data. For example, an application im-
plemented in a hardware description language (HDL) could
be manually instrumented and then run in a simulator.

3.2 Simulation

To evaluate the performance of the memory subsystems
proposed by the superoptimizer, we use a custom trace-
based memory simulator. We use a custom memory subsys-
tem simulator for three reasons. First, we need to simulate
complex memory subsystems beyond simple caches. Second,
rather than the number of cache misses, we are interested
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Table 2: Main Memory Parameters

in the total run time of the application: cache misses alone
would not provide enough information to the superoptimizer
for it to decide between a single level and a multi-level cache
and memory access time is insufficient for deciding how to
divide up the memory resources among multiple memory
subsystems. Finally, the simulator must be fast enough to
simulate large traces for many thousands of repetitions in a
reasonable amount of time.

For the results presented here, our simulator accommo-
dates the memory subsystem components shown in Table 1.
The simulator reports the total cycles that the application
would take to run on our target platform. For the main
memory, the simulator assumes that there is a priority ar-
biter in front of the main memory with a single read/write
port. The main memory is modeled as a DRAM device
with the parameters shown in Table 2, which were chosen
to closely model our experimental platform.

3.3 Optimization

We use old bachelor acceptance [12] to explore the search
space of memory subsystems. Old bachelor acceptance ex-
tends threshold acceptance [8], which is a stochastic hill-
climbing technique similar to simulated annealing [14]. Old
bachelor acceptance provides a compromise between search
space exploration and hill climbing. Thus, although we may
not obtain the best possible memory subsystem with this
technique, we do see fairly good results in much less time
than it would take to perform an exhaustive search.

As in [27], a proposal for a particular memory subsystem
involves (1) the insertion of a memory subsystem compo-
nent, (2) the removal of a component, or (3) a change to one



of the component’s parameters. This allows the generation
of arbitrarily complex memory subsystems. The components
supported by the superoptimizer are shown in Table 1.

The search space is much larger when multiple kernels are
considered than it is for single-threaded applications. Be-
cause of this, in addition to the address-selection heuristic
presented in [27], our superoptimizer employs a heuristic to
guide it to spend more effort exploring the memory subsys-
tems that are most likely to benefit the application. To do
this, the subsystems for each kernel and FIFO are weighted
by the product of their resource usage and their total mem-
ory access time. The superoptimizer then randomly selects
a subsystem to modify based on these weights. This causes
the superoptimizer to spend more time on those memory
subsystems that consume a large portion of the resources
and those with the most room for improvement.

Since our target device is an FPGA, we constrain the su-
peroptimization process by FPGA resources. Specifically,
we constrain the superoptimization process such that the
final application uses no more than 80% of the slices and
no more than 80% of the BRAMs available on the FPGA.
By constraining the resources to 80%, we prevent the de-
sign from becoming too congested, which could prevent the
design from being routed or meeting timing closure. In ad-
dition to the resource constraints, we place a lower bound of
100 MHz on the system clock for the design. The clock con-
straint prevents the superoptimizer from slowing down the
computation with an overly-complex memory subsystem.

To enforce the resource constraints, rather than build each
proposed memory subsystem, the superoptimizer tracks the
resource usage of each memory subsystem component by
storing synthesis results in a database. The sum of the re-
sources used for each component are then used in the super-
optimization process. To ensure the design will run at the
required frequency, memory subsystem components whose
synthesis estimates are less than 100 MHz are discarded.

Although the constraints on BRAMs and slices are fairly
conservative, the constraint on frequency could easily be bro-
ken with too complex of a design. To address this, we main-
tain an estimate of the maximum path length in the super-
optimizer and use the estimate as an additional constraint.

3.4 Subsystem Generation

Once a memory subsystem has been superoptimized, we
use an automatic memory subsystem generator to generate
a VHDL description of the memory subsystem. This sub-
system generator is capable of generating all of the memory
subsystems shown in Table 1. Each subsystem has a sim-
ple SRAM-style interface with per-byte write enables. The
subsystems are connected to the main memory using a pri-
ority arbiter capable of allowing multiple outstanding main
memory requests (one for each subsystem).

The word size of various components in the memory sub-
system can differ. To handle this, an adapter is inserted
between each component in the memory subsystem. For ex-
ample, if there is a two-level cache where the first level has
a word size of 8 bytes and the second level has a word size of
16 bytes, the adapter will direct the reads to the correct part
of the larger word and set the byte mask appropriately for
writes. If the second level cache has the smaller word size,
each access from the first level cache will be turned into mul-
tiple accesses. For simplicity, the word size is restricted to
a power of two.
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4. BENCHMARKS

Following is a description of the benchmarks used to eval-
uate our custom memory subsystems. All of the benchmarks
are implemented in ScalaPipe [26]. ScalaPipe is a streaming
application generator that allows one to author an appli-
cation in a high-level language and then generate code for
deployment on traditional processors and FPGAs.

We have enhanced ScalaPipe with the ability to generate
applications that output memory address traces for kernels
deployed on standard processor cores and to use our cus-
tom memory subsystems for kernels deployed on FPGAs.
This allows us to deploy the application first on processor
cores to generate the address traces and then generate the
application on FPGA cores for deployment with our custom
memory subsystems.

4.1 Merge Sort

The first application we consider is a merge sort capable
of sorting up to one million 32-bit integers [5]. This applica-
tion makes use of a generic merge kernel with a single input
channel and a single output channel. The kernel is replicated
[lgn] times to sort n elements, as shown in Figure 2. Each
kernel in the pipeline sorts sequences of elements 2x longer
than the sequences from the preceding kernel by using an
internal buffer to store half the elements.

Input

|

Merge-2

|

Merge-4
I
I

Y
Merge-m

|

Output
Figure 2: Merge Application Topology

Due to the memory requirements of sorting one million in-
tegers, this application requires off-chip memory. However,
exactly how the BRAM resources of the FPGA should be
divided up among the kernels and FIFOs is not immediately
apparent and is the subject of investigation.

4.2 n-Body

The next benchmark we consider is an application to simu-
late the 3-dimensional n-body problem using the naive O(n?)
algorithm. An n-body simulation predicts the positions and
velocities of point masses in space at various times. The
naive algorithm updates each point by considering the grav-
itational effect of all other points. The topology of the n-
body application is shown in Figure 3.

In the n-body application, the Input kernel reads the ini-
tial positions of each particle to be simulated. The Buffer
kernel buffers the points for the next iteration (or from input
on the first iteration). Next, the Streamer kernel sends the
particles past the Force kernel, which computes the forces on
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Figure 3: n-body Application Topology

each particle. The Accumulate kernel then sums the forces
on each particle. Once the total force on a particle has been
computed, the Update kernel updates the particle’s position
and velocity, sending the results to both the Output and
Buffer kernels. Finally, the Output kernel saves the results.

In this application, there are two kernels that use off-chip
memory: the Buffer kernel and the Streamer kernel. In ad-
dition to the memory subsystems used by these two kernels,
there are eight FIFOs to be optimized. Although it would
be possible to simulate a small number of particles without
using off-chip memory, larger problems necessitate the use
of off-chip memory, leaving us to determine how to best use
the BRAM resources.

4.3 Laplace

The Laplace benchmark is an application to solve Laplace’s
equation using a Monte-Carlo technique [26]. Laplace’s equa-
tion is a partial differential equation that can be used to
model steady-state heat diffusion. The topology of this ap-
plication is shown in Figure 4.

In the Laplace application, random numbers are generated
using the Mersenne twister [16] random number generator in
the RNG kernel. The Split kernel divides the random num-
bers among two Walk kernels, which perform a random walks
from each position of interest. Next, the Avg kernel averages
the results of the random walks and sends the output to the
Output kernel.

The only kernel in this application to use a memory array
is the RNG kernel, which uses 2,496 bytes of memory. So al-
though this application does not require the use of off-chip
memory, off-chip memory could potentially be used effec-
tively for the RNG kernel and one or more of the FIFOs.

4.4 Matrix-Matrix Multiply

The matrix-matrix multiply benchmark is a streaming ap-
plication to perform matrix-matrix multiplication on two
256x256 matrices of 32-bit floats. The topology is shown in
Figure 5.
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Figure 5: Matrix-Matrix Multiplication Topology

In the matrix-matrix multiply benchmark, the source ma-
trices are provided by the Matrixs and Matrixp kernels.
The Distribute kernel holds the matrix data and streams
it past the Product kernels. Each Product kernel performs
a dot product. In our experiments, we use two Product ker-
nels. Next, the Product kernels send the dot products to
the Combine kernel, which collects the results in the correct
order. Finally, the Output kernel outputs the results.

With this benchmark, only the Distribute kernel uses a
memory array: one to store the matrices totaling 524,288
bytes. In addition to this memory subsystem, there are FI-
FOs connecting all of the kernels, which could potentially
be resized.

4.5 Median

Finally, we consider an application to find the median of a
stream of up to one million unique integers. This benchmark
is a simple two-stage pipeline, shown in Figure 6, where the
Hash stage removes duplicates using an open-address hash
table and the Heap stage uses a binary heap to recover the
median value.

In the median application, both the Hash and the Heap
kernels require more memory the FPGA has available. The
Hash kernel uses 8 MiB and the heap kernel uses 4 MiB.
In addition to the memory subsystems for the kernels, the
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FIFO between the kernels is another subsystem whose size
and implementation is to be optimized.

S. RESULTS

Our results are presented with respect to the following
baseline: we implement all FIFOs as registers (FIFOs that
can hold a single element). All memory subsystems for ker-
nels are connected directly to the arbiter for the main mem-
ory. This type of memory structure uses the least amount
of area on the FPGA device and requires the least amount
of effort to implement. Thus, although it might not be the
final design for a particular application, it does represent a
likely starting point.

Figure 7 shows the speedup of the superoptimized mem-
ory subsystems over the baseline for each benchmark as re-
ported by the memory simulator (the g-mean bar shows the
geometric mean). Because the simulator takes into account
computation time as well as memory access time, the sim-
ulated speedup should be an accurate representation of the
actual speedup one would expect to obtain by running the
application on the physical device. However, there are two
potential sources of error. The first is the main memory
model, which does not take all possible parameters into ac-
count (for example, refresh is not included in the simulated
memory model). The other source of error is the application
input and output, which is done over a USB interface.
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Figure 8: Actual Speedup

Figure 8 shows the actual speedup from running each
benchmark on the FPGA device described in Section 1. The
first bar in each group shows the speedup over the baseline
for the superoptimized memory subsystem. As before, the
g-mean group shows the geometric mean.

In addition to a comparison of the superoptimized mem-
ory subsystem against the baseline, we also compare a generic
memory subsystem as well as a naive memory subsystem to
the same baseline. For the generic memory subsystem (the
second bar in each group in Figure 8), each kernel memory
subsystem has a 8 KiB direct-mapped cache and each FIFO
is 256 items deep and implemented in BRAM. This generic
memory subsystem demonstrates the performance one might
expect from a memory subsystem that was selected without
considering the implementation details of the kernels.

For the naive memory subsystem (the last bar in each
group in Figure 8), no BRAM is used for the kernel memory
subsystems and each FIFO is 256 items deep implemented
in main memory instead of BRAM. The naive memory sub-
system attempts to demonstrate a worst-case memory sub-
system where every access contends for main memory.

Comparing the actual results to the simulated results, we
see that in most cases the actual speedup was slightly higher
than the simulated speedup. This is due to the fact that re-
ducing the number of main memory accesses improves per-
formance more than the simulated memory model predicts.
However, for the Laplace benchmark, the actual speedup is
less than predicted. Again, this is due to the main memory
model since, as we will see later, two of the FIFOs between
kernels were moved into main memory rather than using
BRAMs.

5.1 Laplace

The Laplace benchmark exhibits a smaller speedup than
the simulation would imply. For the Laplace benchmark, the
superoptimizer selected a 4,096-byte scratchpad for the RNG
kernel. This moves all memory accesses RNG into the faster
BRAM, avoiding the main memory completely. In addition,
several of the FIFO sizes were adjusted, as shown in Table 3.

Because the superoptimizer tries to find the memory sub-
system that provides the lowest execution time using as few
resources as possible, several of the FIFOs are implemented



FIFO | Depth | Implementation
RNG — Split 1 | register

Split — Walk; 256 | main memory
Split — Walko 256 | BRAM

Walk; — Avg 64 | main memory
Walky, — Avg 8 | BRAM

Avg — Output 1 | register

Table 3: Laplace FIFO Implementations

:

xor 32768

y

spm 16384

y

cache 1x16
direct WB

xor 32768

|

Figure 9: Subsystem for the Hash kernel

in main memory rather than directly in BRAM. According
to the simulation model, this does not slow down the bench-
mark since the computation time is able to hide the memory
latency. However, since the main memory model is impre-
cise, there is a benefit to implementing the FIFOs in BRAM
that is unknown to the superoptimizer. By implementing
all of the FIFOs in BRAM, we are able to obtain a speedup
slightly better than the simulation model estimates.

For the Laplace benchmark, the superoptimized memory
subsystem provides more than a 3x speedup over the base-
line. However, the generic memory subsystem provides a
similar speedup. This is because this benchmark is very
sensitive to the size of the FIFOs. Thus, even the naive
memory subsystem offers a performance improvement over
the baseline due to the increased FIFO sizes.

5.2 Median

For the median benchmark, the superoptimized memory
subsystem for the Hash kernel is shown in Figure 9. In
the figure, memory accesses from the kernel enter the top
and memory accesses to the main memory exit the bottom.
In this particular memory subsystem, the address is trans-
formed by flipping a bit (xor). The address transformation
is followed by a 16,384-byte scratchpad, which is followed by
a single-entry cache having a single line that is 16 bytes (the
WB in Figure 9 stands for write-back). Finally, the last ad-
dress transformation reverses the first transformation. Note
that the superoptimizer automatically inserts address trans-
formations in pairs like this to ensure the correct section of
main memory is accessed.

The effect of the address transformation is to move certain
parts of the hash table into the scratchpad. The cache can
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:

spm 131072

cache 2048x16
4-way PLRU WB

Figure 10: Subsystem for the Heap kernel

be helpful here since the main memory interface is 16-bytes
wide and we only access 4 bytes at a time. Therefore, the
cache allows us to avoid main memory accesses when multi-
ple words are requested within the same 16-byte range.

The superoptimized memory subsystem for the Heap ker-
nel is shown in Figure 10. Again, we have a scratchpad fol-
lowed by a cache. This is logical for a binary heap structure
since the early addresses are accessed much more frequently
than later addresses.

Finally, the FIFO between the Hash and Heap kernels is
16 entries deep and implemented in BRAM. This allows the
Hash kernel to keep running even if the Heap kernel backs
up. The other FIFOs are 1 entry deep.

5.3 Merge Sort

The merge benchmark has 15 memory subsystems for the
Merge kernels and 23 memory subsystems for FIFOs, giv-
ing a total of 38 memory subsystems. Although there are
20 Merge kernels, only 15 have memory subsystems since
ScalaPipe does not generate memory subsystems if the size
of the memory is less than 1,024 bytes.

For the Merge kernels with smaller memory subsystems
that need to store fewer than 32,768 bytes, the superopti-
mizer selects scratchpads. However, for the larger memory
subsystems, the superoptimizer selects small, direct-mapped
caches. The scratchpads allow the smaller memory subsys-
tems to run without accessing main memory at all. The
small direct-mapped caches, on the other hand, reduce the
number of accesses going to main memory since the main
memory is 16 bytes wide and each access is only 4 bytes.

Most of the FIFOs between kernels were selected to be a
single element deep and implemented as a register. However,
several of the FIFOs between the later stages are 1,024 and
2,048 elements deep implemented in BRAM. This is because
the access latency between the later stages will vary since
not all the accesses will hit in cache.

In terms of performance, the superoptimized memory sub-
system for the merge sort benchmark is over 3x the baseline
memory subsystem and closely matches what the simula-
tion predicted. In this case, the generic memory subsystem
provides a performance improvement, but just over 2x the
performance of the baseline memory subsystem.

5.4 Matrix-Matrix Multiply

As shown in Figure 8, the superoptimized memory subsys-
tem for the matrix-matrix multiply benchmark (mm) pro-
vides about a 2x speedup over the baseline benchmark. For
this benchmark, only the Distribute kernel uses external
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Figure 11: Subsystem for the Distribute kernel

memory. The superoptimized memory subsystem for the
Distribute kernel is shown in Figure 11.

There are several interesting features of the memory sub-
system shown in Figure 11. The first observation is the split.
The split causes the memory accesses for the two source ma-
trices to go to separate caches. The left side of the split
handles the matrix that is accessed in column-major order
whereas the right side handles the matrix that is accessed in
row-major order. After the split, the first matrix is stored in
a cache, whereas the second matrix is transposed from the
memory subsystem’s perspective before entering a cache.

All but four FIFOs are implemented as registers in the
superoptimized memory subsystem for the mm benchmark.
The two FIFOs between the Distribute kernel and the
Product kernels are 256 entries and implemented in BRAM.
The FIFOs between the Product kernels and Combine kernel
are 128 entries deep and implemented in BRAM as well.

5.5 n-body

For the n-body benchmark, neither the simulated nor ac-
tual speedup are very large. This is because the n-body
benchmark is compute-bound. However, we note that there
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Figure 12: Subsystem for the Buffer kernel

l

spm 131072

:

cache 1024x16
direct WB

Figure 13: Subsystem for the Streamer kernel

is a performance gain even in this case. For this benchmark,
all of the FIFOs are implemented as single-element registers.
This allows all of the memory resources to be dedicated to
the two kernel memory subsystems.

The superoptimized memory subsystem for the Buffer
kernel is shown in Figure 12. This memory subsystem con-
tains two prefetch components, two caches, and a scratch-
pad. The first prefetch requests the value 32 bytes after
the current address, which causes the first cache to request
the next line after the current access. Likewise, the second
prefetch has the same effect on the second cache. Finally,
the scratchpad stores the first elements rather than storing
everything in main memory.

The memory subsystem for the Streamer kernel, shown
in Figure 13, is a scratchpad followed by a cache. Un-
like the previous memory subsystem, here the scratchpad
comes first. This is likely due to the fact that placing the
scratchpad after a cache, as is done for the memory subsys-
tem for the Buffer kernel, incurs extra latency and poisons
the cache. However, the prefetch components used for the
Buffer kernel memory subsystem reduce this effect.

Given the way the benchmark works, it is not intuitive
that the superoptimized memory subsystem for the Buffer
kernel would be more complex than the subsystem for the
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Streamer kernel since the Streamer kernel streams the data
past the Force kernel. However, because the Force kernel
is computationally intensive, the memory delays that the
Streamer kernel experiences contribute little to the overall
run time. Instead, reducing the memory access times for
the Buffer kernel provides a greater performance advantage
than reducing the access times for the Streamer kernel.

5.6 Input Specificity

Although we are able to obtain a performance improve-
ment for each of the benchmarks, we note that this improve-
ment is not for the benchmark, but for a particular data set
used with the benchmark. Because we are using only a sin-
gle address trace for the optimization, it is possible that the
memory subsystems could be over-fitted. Indeed, this ap-
pears to have happened for the Hash kernel for the median
benchmark (Figure 9), which contains an address transfor-
mation to move parts of the hash table into a scratchpad.

To determine to what extent over-fitting affects the re-
sults, we re-ran each of the benchmarks with ten separate
inputs. The results are shown in Figure 14. Here each bar
shows the speedup of the superoptimized memory subsys-
tem over the baseline memory subsystem for a particular
data set. The left-most bar in each group shows the re-
sult from the original data set presented above. The nine
remaining bars show the speedup for different data sets.

To change the input for the Laplace benchmark, we used
a different random number seed. As shown in Figure 14,
using a different random number seed has little effect on
the speedup. For both the median and merge benchmarks,
we used different data sets of the same size as the original.
Finally, for the n-body benchmark, we used a different input
size for each run (1,000 to 10,000 in increments of 1,000).

As Figure 14 shows, there is very little difference in the
performance gain with different input data sets. This sug-
gests that the superoptimized memory subsystems are not
over-fitted. Nevertheless, it is conceivable that some super-
optimized memory subsystems could be overly specific for
a particular data set. In some cases, this could be desir-
able. For example, if an application used a hash table and
the data stored in the hash table never changed. Generally,
overfitting is something we would likely want to avoid.
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5.7 Discussion

As the above results indicate, it is possible to superopti-
mize memory subsystems for streaming applications. The
structure of some of the superoptimized memory subsys-
tems are not surprising. For example, the memory sub-
system for the Laplace benchmark is likely very similar to
what one would select manually. On the other hand, some
of the memory subsystems are logical, but would likely re-
quire manual experimentation to discover. For example, the
memory subsystems for the median and the merge bench-
marks are fairly standard, but require the tuning of many
parameters. Finally, the superoptimizer is able to discover
memory subsystems that are very unusual, such as those for
the matrix-matrix multiply and n-body benchmarks.

The superoptimization process can take a long time, de-
pending on the number of memory subsystems and the length
of the memory address traces. The superoptimized memory
subsystems presented here were generated by running the
superoptimizer for between 10,000 and 200,000 simulation
runs, depending on the benchmark. Applications with only a
few memory subsystems, such as the Laplace benchmark, re-
quire far fewer simulation runs than those with many mem-
ory subsystems, such as the merge benchmark.

The run time of each simulation depends on the length of
the address trace as well as the complexity of the memory
subsystem. For the benchmarks presented here, the time for
a single simulation is in the range of 5 to 15 minutes. To
reduce the total run time for the superoptimization process,
we made use of multiple processing cores and stored the
results from each simulation in a database shared among the
processing cores. The database allows the superoptimizer to
revisit prior results without simulation.

As the superoptimization process runs, the memory sub-
system it discovers never gets worse and is at all times us-
able. Thus, it is possible to terminate the process as soon as
a satisfactory memory subsystem is discovered. The use of
of multiple cores allowed us to obtain the results presented
here in a week.

6. CONCLUSION AND FUTURE WORK

We have described a technique for creating superopti-
mized memory subsystems for streaming applications. We
have shown that not only do these superoptimized memory
subsystems perform well in simulation, but, by deploying
the applications on an FPGA device, we have shown that
these memory subsystems perform well in actual hardware.
Through the use of ScalaPipe with our superoptimizer, we
were able to create a design implemented on an FPGA de-
vice using a customized memory subsystem with minimal
effort and without writing HDL.

In the future, we would like to explore the use of superop-
timized memory subsystems with existing HDL designs. In
addition, we would like extend this approach to optimize the
memory subsystem for objectives other than performance,
such as minimizing writes or energy consumption.
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