HLS Portability from Intel to Xilinx: A Case Study

Zhili Xiao
Roger D. Chamberlain
Anthony M. Cabrera

McKelvey School of Engineering
Washington University in St. Louis

Architectures and Performance Group
Oak Ridge National Laboratory
HLS Portability from Intel to Xilinx: A Case Study

Zhili Xiao and Roger D. Chamberlain
Department of Computer Science and Engineering
Washington University in St. Louis
St. Louis, Missouri, USA
{xiaozhili, roger}@wustl.edu

Anthony M. Cabrera
Architectures and Performance Group
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
cabreraam@ornl.gov

Abstract—Field-programmable gate arrays (FPGAs) are a hardware accelerator option that is growing in popularity. However, FPGAs are notoriously hard to program. To this end, high-level synthesis (HLS) tools have been developed to allow programmers to design hardware accelerators with FPGAs using familiar software languages. The two largest FPGA vendors, Intel and Xilinx, support both C/C++ and OpenCL C to construct kernels. However, little is known about the portability of designs between these two platforms.

In this work, we evaluate the portability and performance of Intel and Xilinx kernels. We conduct a case study, porting the Needleman-Wunsch application from the Rodinia benchmark suite written in Intel OpenCL C to Xilinx platforms. We use OpenCL C kernels optimized for Intel FPGA platforms as a starting point and first perform a minimum effort port to a Xilinx FPGA, also using OpenCL C. We find that simply porting one-to-one optimizations is not enough to enable portable performance. We then seek to improve the performance of those kernels using Xilinx C/C++. With rewriting the kernel for burst transfer and other optimizations, we are able to reduce the execution time from an initial 294 s to 2.2 s.

I. INTRODUCTION

With Dennard scaling no longer effective [1] and Moore’s Law in retreat [2], offloading computations from traditional multicore processors to a hardware accelerator is a common approach used in the continuing effort to scale performance and efficiency. FPGAs are an attractive solution, because an FPGA allows the generation of specific hardware to make use of parallelism and specialized operations in the application. However, classical programming of FPGAs using HDLs, such as Verilog and VHDL, requires expertise in digital designs and a huge amount of effort. Xilinx and Intel, the two FPGA vendors, have tried to improve productivity by offering high-level synthesis (HLS) which allows programmers to design hardware accelerators with FPGAs using familiar software languages, e.g., C/C++ and OpenCL C. Little is known about the portability of designs between these two platforms, which can hinder the further adoption of HLS designs.

To evaluate the portability and performance of Intel and Xilinx kernels, here we extend our prior work [3] by porting the Needleman-Wunsch application [4] from the Rodinia benchmark suite [5] written in Intel OpenCL C [6] to a Xilinx FPGA. We used the Intel OpenCL C kernel codes from [6] as a starting point and first performed a minimum effort porting to Xilinx OpenCL C. We then improved the performance of the kernel codes in Xilinx C/C++ by taking advantages of Xilinx C/C++ pragmas and control and by moderately modifying the codes for burst transfer. Eventually, the run time was able to be reduced from 294 s to 2.2 s. This is much closer to, but not quite yet competitive with, the performance of the initial Intel designs. This suggests that to achieve the performance portability of HLS designs across FPGA vendors is not a straightforward task. Our code can be found at https://github.com/zhilixiao/rodinia-nw.git.

Similar to our previous efforts [3], this work is a detailed case study of porting an application from the Intel platform to the Xilinx platform, which details the porting efforts and experiences of porting FPGA kernel optimizations from Intel OpenCL to Xilinx HLS and evaluates the performance and portability of the ported kernel. The factors that are distinctive to this work are the following:

• we port an application from a different computing pattern (dynamic programming);
• we start from Xilinx OpenCL C, expanding to Xilinx C/C++;
• we achieve substantial performance improvement through exploration of several optimizations; and
• we analyze the performance to study the reasons for performance gaps that remain.

II. BACKGROUND AND RELATED WORK

The application that we use in this study is the Needleman-Wunsch application [4], which comes from the Rodinia benchmark suite originally created by Che et al. [5]. The intent of Rodinia was to provide a set of applications to evaluate heterogeneous computing systems across accelerator interfaces (e.g., OpenMP and OpenCL) and parallel computing communication patterns (e.g., dynamic programming, structured grid). Zohouri et al. [6] later extended the OpenCL implementations of a subset of the Rodinia benchmarks by designing optimized high level synthesis (HLS) kernels for FPGAs. However, the hardware designs from Zohouri et al. are optimized for Intel FPGA platforms. In this work, we port the Needleman-Wunsch OpenCL kernels from the suite to be synthesizable and performant on Xilinx FPGAs.

Sanaullah et al. [7] uses the Needleman-Wunsch and other common HPC applications to explore the optimization strategies and their effects on FPGAs for Intel OpenCL C. In particular, the authors detailed their optimization strategies and their effect on the single-work-item (SWI) kernel of
the Needleman-Wunsch algorithm. Most of these strategies have been adopted by Zohouri et al.’s original code. In our optimization exploration, we attempted to use their temporary variables strategy to resolve iteration dependencies.

On the Xilinx side, two recent works by Brown evaluated the performance of Xilinx’s Vitis HLS tools with the Nekbone mini-app and the Himeno benchmark [8], [9]. In porting the Nekbone AX kernel from Fortran to Xilinx FPGAs via Vitis, the author studied a number of optimizations, including revising the algorithm from von Neumann to dataflow form, optimizing the use of memory banks, loop unrolling, and ping-pong buffering. In porting the Himeno benchmark, he increased the port data width using the DATA_PACK pragma and splitting the dataflow into separate kernels to take use of HLS stream, following the Vitis guidance. De Fine Licht et al. [10] documented many transformation strategies to optimize the performance when translating applications from traditional software to Xilinx HLS. The authors categorize these strategies and emphasize the importance of pipelining, scaling, and memory accesses. Brown’s and de Fine Licht et al.’s point to us a direction for future work.

To overcome vendor differences, Kenter [11] provides guidance for design patterns that work well for both OpenCL based Xilinx SDAccel and Intel FPGA SDK for OpenCL tool flows and provides insights into the underlying philosophy and mechanism with examples. Kenter et al. also evaluate the portability of OpenCL based FPGA designs between vendors by implementing an FDTD application for SDAccel and Intel FPGA SDK [12]. By using pre-processor macros, their implementation can flexibly run on FPGAs from different families. Our major difference from this work is that we evaluate the portability by starting from an already optimized design for the Intel OpenCL FPGA SDK instead of starting from scratch, trying to optimize for both vendors.

In prior work, we used Needleman-Wunsch to evaluate the performance and portability between Intel FPGAs with different memory architectures [13]. We built the OpenCL C kernels that were originally targeting an Intel FPGA connected via PCIe on the Intel HARPv2 platform, which combines a CPU and FPGA on the same chip package. The approach in this work is similar but with a different focus on optimizing the performance and portability across different FPGA vendors.

We further used the work of Zohouri et al. [6] to evaluate the performance and portability between Intel and Xilinx platforms [3]. This work extends [3] by porting a different class of application (dynamic programming) and utilizing Xilinx C/C++ for kernel design in order to enable design choices not available when using OpenCL C in Xilinx.

III. METHODS

To evaluate the portability of HLS, we leverage the Intel OpenCL implementation of Needleman-Wunsch from the Rodinia benchmark suite modified by Zohouri et al. [6] and use the host and kernel codes as a starting point to build and run the kernels on the Xilinx platform. We first performed one-to-one optimization ports to Xilinx OpenCL C, and then explored how performant the kernel can be in Xilinx C/C++. The Xilinx platform for this work is a Xilinx Alveo U250 Data Center accelerator card, which includes an XCU250 FPGA of the Xilinx UltraScale+ architecture, a Gen3 x16 PCIe interface, and 64 GB of DDR4 off-chip memory. To author designs, we used the Vitis 2020.1 Core Development kit.

![Image](image-url)

Fig. 1. Illustration of the baseline version of the Needleman-Wunsch algorithm.

Needleman-Wunsch [4] is a dynamic programming algorithm frequently used in bioinformatics. The goal of the application is to find the global optimal alignment of two biosequences. Figure [1] shows a pictorial representation of the Needleman-Wunsch algorithm. Each biosequence is represented by integers which are attached to the output matrix as an extra row and column, as indicated by the blue elements. The score of each element depends on its top, top left, and left neighbors as indicated by the green arrows, the score from a reference matrix, and a penalty value for mismatch. Due to these data dependencies, an element can only be computed after the score of its top, top left, and left neighbors have been determined.

A. Initial Kernel Descriptions

To examine the portability of kernel designs, we chose the baseline kernel and the most performant kernel versions (v1 and v5 following the numbering by Zohouri et al. [6]) for porting. Both kernel versions are single-work-item (SWI) kernels. The baseline version is just the SWI model itself with no FPGA optimizations at all. The v5 version is the one that has the highest performance and uses the least on-chip resources among the kernel versions according to the reports by Zohouri et al. [14] and Cabrera and Chamberlain [13]. In what follows, we refer to this version as the “best” version.

a) The Baseline Kernel: The baseline kernel is simply the doubly nested loop outlined in lines 3-8 of Algorithm [1] which iterates through each location in the output matrix and performs the computations as showed in Figure [1]. As mentioned above, the computation of the score of the current element depends on its top, top left, and left neighbors as well as the score from the reference matrix and the penalty value, which is done in line 5-8. Specifically, line 5 and 6 subtract the penalty value from the top and left neighbors, and line 7 adds the reference score at the current location to the top left neighbor. The max in line 8 is an inline function that will return the maximum of the three three results computed by line 5-7.

b) The Best Kernel: Figure [2] illustrates how the best kernel makes use of wavefront parallelism and computes elements on one diagonal line at a time. The kernel processes the output matrix as groups of rows, where the size of each
Algorithm 1 Baseline Needleman-Wunsch Algorithm

1: int output[dim+1][dim+1], reference[dim+1][dim+1]
2: int penalty
3: for i ← 1 to N + 1 do
4: for j ← 1 to N + 1 do
5: top = output[i − 1][j] − penalty
6: left = output[i][j − 1] − penalty
7: top_left = output[i − 1][j − 1] + reference[i][j]
8: output[i][j] = max(top, left, top_left)

Fig. 2. Illustration of the best kernel with BSIZE=4 and PAR=3. The number inside in grid is the order in which elements will be processed.

group is set by the parameter BSIZE. Within a single row group, each group is further divided into chunks of columns to fix the length of diagonal lines. The number of columns in each chunk is defined by the parameter PAR. Once the kernel has reached the bottom of the current chunk, it will wrap around to the next chunk until all elements in the current group of rows have been processed.

Another major optimization is the deployment of 2D shift registers of size PAR by PAR to hold the computation results from the last diagonal lines. This optimization has two advantages: first, it resolves the dependencies by storing the elements in local storage, which avoids expensive accesses to global memory; second, the lower triangular buffers rearrange the elements and coalesce the memory accesses such that elements on the same row can be burst transferred when writing to global memory, which will increase the bandwidth utilization.

The design of the best kernel introduces two design parameters, BSIZE and PAR. The hardware search space in our experimentation is the Cartesian product of

\[BSIZE \in \{256, 512, 1024, 2048, 4096\} \]

and

\[PAR \in \{8, 16, 32, 64\}. \]

To compare with the performance on Intel FPGAs, the sequence size we used is 23040, which is the same as Zohouri et al. [6] and Cabrera and Chamberlain [13].

B. Minimum Modification Porting to Xilinx OpenCL C

Intel OpenCL and Xilinx OpenCL use the same host interface. We followed the modern C++ conventions used in [3] to rewrite the host code and move the mapping of the DDR banks to the configuration file for Xilinx, instead of establishing the connection in Intel host codes. Using the same methods as in [3], we ported the baseline and the best kernel to Xilinx OpenCL C with minimum changes to simply allow the codes to be executable on the Xilinx platform. Because Xilinx has a partition limit of 1024 for the shift register that is too large to be completely partitioned, we choose not to partition it and let the compiler make its best decision. Besides porting FPGA optimizations like loop unrolling and shift registers, additional changes not documented in [3] are the porting of inline functions and compiler pragma ivdep, described next.

1) Inline Functions: In the baseline kernel version, the max function is an inline function. Inlining a function will make sure the function will not be generated as a hierarchical submodule at the register transfer level (RTL). For Intel OpenCL, inlining a function is the same as in C/C++,

\[
\text{inline void foo() \{} \}
\]

For Xilinx, the equivalent OpenCL attribute needs to be placed above the function,

\[
attribute\{(always_inline)\}.
\]

2) Ignore Vector Dependence: In the most performant kernel version, Intel OpenCL uses the pragma ivdep on the output matrix to forestall the false load/store dependency assumption on the global memory buffer for the output matrix. As mentioned in Section III-A, the dependency on the output matrix has been resolved because of the use of 2D shift registers. For Intel, to ignore the assumed inter loop dependency, the loop is preceded by

\[
\#pragma ivdep array(data).
\]

Although the equivalent attribute was not found in the Vitis document, the SDAccel document suggests that the xcl_dependence attribute should be supported by Xilinx OpenCL C. With

\[
attribute\{(xcl_dependence(variable ="data", type="Inter", direction="RAW", dependent="false"))\},
\]

the read after write loop carried dependency can be resolved and the compiler can lower the initiation interval [11].
C. Porting to Xilinx C/C++ and Optimizing Performance

To optimize the performance of the best kernel, we explored

the use of Xilinx C/C++ for architecting kernels, since Xilinx
C/C++ affords more fine-grained control over the resulting
hardware than is possible with OpenCL C.

1) HLS INTERFACE: All kernel arguments will be im-
plemented as a port for input or output operations in the
RTL design. In Xilinx C/C++, the implementation of these
ports must be specified by the HLS INTERFACE pragma
to assign an I/O protocol. We used the default setting of
Vitis, assigning the array pointers to the m_axi interface
and scalar inputs to the s_axilite interface. In addition to
assigning the interface, we also explored the effect of the
num_read/write outstanding option of the interface,
which specifies the maximum number of non-responding read-
/write requests can be issued before the design stalls for wait
for responses. Without specification, Xilinx will group all ports
to the same memory interface. Because the interface will only
address access request of one variable at a time, this will cause
memory port contention and increase the pipeline initiation
interval (II) even when the memories are mapped to different
DDR banks. We thus assign a different bundle to each array
input.

2) Loop Unrolling: To port the loop unrolling optimiza-
tions, Xilinx has a direct equivalence HLS pragma for loop
unrolling.

#pragma HLS unroll factor=N

The only difference is that the pragma needs to be placed
inside the loop instead of preceding the loop.

3) Shift Registers: To port the shift registers, we treat the
1D shift registers and 2D shift registers separately. For 1D shift
registers, we use the ap_shift_reg class in the Xilinx HLS
library. To show the differences between the way we port the
1D shift registers in OpenCL C and in Xilinx C/C++, Listing 1
shows the set up 1D shift registers in Xilinx OpenCL C and
Listing 2 shows the use of ap_shift_reg for Xilinx C/C++.

One major syntax difference is the location of new inputs. It
was found that the Xilinx compiler sometimes had trouble
inferring 1D shift registers in the style of Listing 1 which
will degrade the performance. More about this is discussed in
Section IV-B.

For 2D shift registers, as in [3], we completely partitioned
the shift register arrays, and replaced the Intel OpenCL C
loop unrolling pragmas with Xilinx HLS unrolling pragmas,
as shown in Listing 3. There are several reasons for not
implementing the 2D shift registers with ap_shift_reg.
First, ap_shift_reg only supports 1D shift registers. Sec-
ond, rewriting the columns of 2D shift registers into 1D shift
registers would break down the global memory access loops
and hinder the inference for burst transfer.

4) Loop Carried Dependence: Similar to porting to Xilinx
OpenCL C, we first ported the ivdep pragma by plac-
ing an HLS dependence pragma inside the loop, with
direction=RAW and type=inter for loop carried de-
pendencies,

#pragma HLS dependence variable=data inter
RAW false.

We then explored the effect of resolving other kinds of
dependencies including write after read (WAR) and write after
write (WAW) dependencies on the output matrix.

5) Modifications for Burst Transfer: To enable burst trans-
fer inference, we first isolated global memory access loops
from other operations in the computation loop. We changed
i-- to i++ because one of the precondition for burst transfer
in Xilinx is continuous monotonically increasing order. As
opposed to the loop switching technique of [10] to combine
control flows into one pipeline, we applied loop unswitc-
tching techniques to global memory access loops to move the
boundary conditionals outside the loop. The removal of conditionals
reduces the loop pipeline initiation interval (II) to 1 such that
the burst transfer could be inferred by Vitis [11]. Since the
burst transfer size will be no larger than PAR, the number
of columns that will be processed at the same time, we set the max burst read/write length to 64, the largest \text{PAR} in our design space.

6) Exploration for Optimization: Besides the porting efforts above, we also tried to leverage the abundant options and control that Xilinx C/C++ offers to us. To explore what options are effective, we apply these options on the best kernel with \texttt{BSIZE} = 512 and \texttt{PAR} = 32. We explored the effects of binding arrays to different storage types to arrays, like FIFO and RAM with different number of ports, different ways to partition and partition factors of arrays, and pipeline the computation loops. Moreover, we explore the effect of binding ports to different memory banks to avoid memory interleaving accesses and the effect of locating the compute unit to super logic regions (SLRs).

IV. RESULTS

A. Minimum Modification Porting Design Space Search

With one-to porting efforts as detailed in Section III-B, the baseline version’s execution time is 315 s, and the best execution time of the best kernel across the design space is 294 s. Figure 3 shows the run time of the best kernel across the design space. Note that the performance varies considerably across the design space, yet the highest performing design achieves a speedup of only 1.07×.

On the other hand, the best kernel on Intel FPGA with PCIe and HARP system takes only 0.260 s and 0.290 s achieving 784× and 2862× speedups relative to the baseline design, respectively. This is in stark contrast to the 1.07× speedup achieved by the minimum porting effort, let alone some other configurations that have even worse performance than the baseline kernel. Moreover, the huge variations in run time of designs with the same \text{PAR} is different from the performance pattern as reported in [13], where the run time of kernels with the same \text{PAR} size but different \text{BSIZE} are similar.

It was also noted that the compiler was not able to synthesize the design with \text{PAR}=64, which was also observed in [13] for \text{BSIZE} smaller than 2048. For the Intel compiler, the design is too congested to fit onto the board. But for Vitis, the limitation is because of the partial write inference on the shift registers and the complex scheduling.

Obviously, with minimum effort porting to OpenCL, the Xilinx Vitis compiler interprets the kernel codes differently and the best kernel cannot achieve the same performance and speedup as it has in Intel systems. More modifications are necessary to improve performance. To this end, we use Xilinx C/C++ to author kernels instead of OpenCL C.

B. Ineffective Optimization Efforts

Xilinx C/C++ offers finer control and more options than Xilinx OpenCL C. Among the options we explored, there are some ineffective optimization efforts which do not decrease the execution time and even harm performance in some cases. We first try to optimize the shift register structure that cannot be completely partitioned. Even though Xilinx asserts that it supports the inferring of shift registers even without complete partition [15], we found that this was not the case until we enabled burst transfers.

To reduce cycles of operations on shift registers, we use the \texttt{BIND_STORAGE} pragma to assign the shift register array to RAM with 1 write port and multiple read ports and FIFO. Before enabling burst transfers, binding arrays to RAM with multiple ports has no performance improvement but consumes more resources, because the RAM cannot satisfy the simultaneous store operations as with the shift registers and therefore breaks the pipeline. Binding to FIFO eventually failed because of the scheduler cannot find a legal memory core for the store operation on the FIFO. After all, the shift register is not completely the same as the FIFO. To mitigate this, we also explored the cyclic partition on the shift registers with partition numbers = 8, 16, or 32 combined with unrolling factor equal to the partition number as described in [16]. We observed that the cyclic partitioning degrades the performance of the kernel. First, the scheduler is still unable to accommodate the store operations on the array even with cyclic partitions. Second, the scheduling complexity increased because the array’s size is not a multiple of the partition factor, which degrades the performance.

However, the inferring of shift registers seems to succeed after we enable burst transfers. No reports on pipeline breaking due to the shift register arrays were found. We attribute this finding to be a bug of Vitis 2020.1, which seems to have been fixed by 2020.2. We also compared the performance of using and not using the \texttt{ap_shift_reg} class for the 1D shift registers after the burst transfer has been enabled. No significant difference in resource and performance was found.

The second option we explored is the number of outstanding read/write requests option in the \texttt{INTERFACE} pragma mentioned in Section III-C1. It specifies the number of transactions that can be initiated before waiting for the first to complete, which can effectively hide memory access latency. Applying the option reduces the execution time of the best kernel from hundreds of seconds to 44 s. However, this option is only effective before burst transfer is enabled. It turns out that after enabling burst transfer, the kernel has to stall for external memory before the next burst transaction can be issued because of the dependency. The burst transfer is more

![Fig. 3. Execution times of the best kernel with one-to-one port to Xilinx OpenCL C, sweeping across the design space of \text{PAR} and \text{BSIZE.}](image)
effective for hiding latency between atomic memory accesses and reduces the execution time to 14 s.

To try to reduce the pipeline II, we used the temporary variable strategy described in [7] to store the offset variables to resolve loop carried dependencies on reading/writing of the global memory. But the dependency could not be resolved by simply using temporary variables. The scheduler reports show that the pipeline II cannot be further reduced because the dependency is in fact caused by the contention on memory ports, which will be discussed in Section IV-D.

Xilinx empowers users with the ability to do coarse-grained floorplanning by specifying the placement of compute units. Since we have mapped the kernel ports to different DDR banks, the location of the compute unit in different SLR regions can decrease or increase the routing across the boundary and thus affect the timing and clock rate. For Avelo 250, SLR0 connects to the port of DDR bank 0, and SLR1 connects to DDR bank 1. Mapping reference to DDR bank 0 and data to bank 1 and explicitly placing the compute unit in SLR0 (2.54 s) or SLR1 (2.57 s) slightly degraded the performance, increasing the run time by about 300 ms. Examination of the implementation log files shows that without specification, Xilinx will spread the compute unit across SLR0 and SLR1 such that the compute unit is close to both memory interfaces, which can slightly reduce the execution time.

C. Effective Optimization Efforts

Using the run time profile of the best kernel, we found that Xilinx failed to infer burst transfer from the original kernel code. Therefore, only atomic transactions to/from the global memory can be issued and more than 10000 ns of global memory access latency could be incurred. By rewriting the best kernel in ways described in Section III-C5, the average global memory transaction size is increased to PAR integers and the latency is reduced to about 300 ns.

Although the performance improvement achieved by the memory banking is minimal, separating global arrays into different memory interfaces with the bundle option can effectively reduce the memory port contention and reduce the pipeline II from 2PAR (caused by the read of the reference matrix and the output matrix) to PAR.

After the rewrite for burst transfers, the Vitis compiler will only pipeline the memory access loops. We added the PIPELINE pragma to the whole computation loop to pipeline both burst transfers and computations. With the read after write dependency on the output matrix resolved by #pragma HLS dependence variable=data inter RAW false, the execution time for the best kernel with BSIZE=512 and PAR=32 is reduced to 6.85 s.

A closer look at the compilation log shows that besides the RAW dependency, Xilinx also assumes WAW dependencies on the output matrix. With #pragma HLS dependence variable=data inter false, all loop carried dependencies can be resolved and execution time is reduced to 2.63 s. Examination of the run time reports shows that resolving all loop carried dependencies will increase the kernel frequency from 105 MHz to 235 MHz, which is the major cause of the speedup.

Xilinx allows users to map memories to different memory banks to avoid interleaving global memory access through building commands or configuration files. With no manual mapping of memory banks, all global memories are accessed through DDR bank 0, and the accroding design will be crowded in SLR 0 which is closest to bank 0. This congested design decreases the clock rate. By mapped the reference matrix to DDR bank 0, the output matrix to DDR bank 1, and the smaller input vector to PLRAM, the clock rate is increased to 295 MHz, and the execution time is reduced to 2.2 s.

D. Xilinx C/C++ Performance Analysis

Table I lists the execution time, the FPGA resource consumption, and the speedup relative to the baseline of Xilinx C/C++ kernels across the design space. It’s hard to make a direct comparison between the hardware resources for Xilinx and Intel, as they use different logic slices. But both of them use only a small amount of the available resource. Because Xilinx was able to identify the shift registers of the C/C++ kernels, BRAM usage does not increase as the PAR size increases as we observed for OpenCL kernels. Figure 4 is a graphic illustration of the execution time of the best kernel across the design space. We observed a similar performance pattern as [13], where designs with the same PAR have a similar execution time, and the performance of designs with PAR=8 are significantly worse than others.

Table I

<table>
<thead>
<tr>
<th>BSIZE</th>
<th>PAR</th>
<th>Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>8</td>
<td>14 s</td>
</tr>
<tr>
<td>512</td>
<td>8</td>
<td>14 s</td>
</tr>
<tr>
<td>1024</td>
<td>8</td>
<td>14 s</td>
</tr>
<tr>
<td>2048</td>
<td>8</td>
<td>14 s</td>
</tr>
<tr>
<td>4096</td>
<td>8</td>
<td>14 s</td>
</tr>
</tbody>
</table>

Fig. 4. Execution times of the best kernel in Xilinx C/C++, sweeping across the design space of PAR and BSIZE.

The C/C++ kernels with burst transfer enabled and pipelined are much more performant than the one-to-one optimization port OpenCL kernels. The execution time is reduced to 2.2 s, achieving 143× speedup relative to the baseline version. However, the Xilinx C/C++ kernels are still 10× slower than the Intel OpenCL C kernels. To know why there continues to be a performance gap and for potential performance improvement in future work, we next utilize the synthesis report and the run time report to the analyze the execution time and study the performance bottleneck.

The synthesis report shows that the computation loop can only be pipelined with II=PAR, because it cannot resolve the loop carried dependency of reads on the reference matrix or
TABLE I
RESOURCES UTILIZATION AND RESULTS FOR THE BASELINE AND THE BEST VERSION WITH DIFFERENT CONFIGURATIONS IN XILINX C/C++.

<table>
<thead>
<tr>
<th>Kernel Version</th>
<th>PAR</th>
<th>BSIZE</th>
<th>Time (sec)</th>
<th>(f_{\text{max}}) (MHz)</th>
<th>LUT</th>
<th>Register</th>
<th>BRAM</th>
<th>DSP</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>N/A</td>
<td>N/A</td>
<td>314.788</td>
<td>300</td>
<td>3752 (0.22%)</td>
<td>5073 (0.15%)</td>
<td>2 (0.07%)</td>
<td>30 (0.24%)</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>8</td>
<td>8.598</td>
<td>10300 (0.6%)</td>
<td>12773 (0.39%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>9.179</td>
<td></td>
<td>10409 (0.6%)</td>
<td>12837 (0.39%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>8.467</td>
<td>10746 (0.62%)</td>
<td>12876 (0.39%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td>8.542</td>
<td>12571 (0.73%)</td>
<td>12825 (0.39%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td>8.540</td>
<td>13782 (0.8%)</td>
<td>12817 (0.39%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best</td>
<td>16</td>
<td>256</td>
<td>2.486</td>
<td>16564 (0.96%)</td>
<td>22376 (0.68%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>2.390</td>
<td>17617 (1.02%)</td>
<td>21942 (0.67%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>2.375</td>
<td>19229 (1.1%)</td>
<td>22239 (0.68%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>133</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td>2.449</td>
<td>20678 (1.2%)</td>
<td>21591 (0.67%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td>2.426</td>
<td>33022 (1.91%)</td>
<td>41720 (1.27%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2.599</td>
<td>33022 (1.91%)</td>
<td>41720 (1.27%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>143</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>2.200</td>
<td>33608 (1.94%)</td>
<td>41900 (1.27%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>2.294</td>
<td>33913 (1.96%)</td>
<td>41920 (1.27%)</td>
<td>4 (0.15%)</td>
<td>6 (0.05%)</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td>2.497</td>
<td>36061 (2.09%)</td>
<td>41571 (1.26%)</td>
<td>4 (0.04%)</td>
<td>6 (0.05%)</td>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td>2.437</td>
<td>36748 (2.17%)</td>
<td>41851 (1.27%)</td>
<td>4 (0.04%)</td>
<td>6 (0.05%)</td>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>3.345</td>
<td>62210 (3.6%)</td>
<td>81196 (2.47%)</td>
<td>4 (0.04%)</td>
<td>6 (0.05%)</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>3.283</td>
<td>64841 (3.75%)</td>
<td>81218 (2.47%)</td>
<td>4 (0.04%)</td>
<td>6 (0.05%)</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>3.147</td>
<td>64004 (3.7%)</td>
<td>81102 (2.46%)</td>
<td>4 (0.04%)</td>
<td>6 (0.05%)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td>3.118</td>
<td>63711 (3.69%)</td>
<td>81198 (2.47%)</td>
<td>4 (0.04%)</td>
<td>6 (0.05%)</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td>3.056</td>
<td>67478 (3.9%)</td>
<td>81139 (2.46%)</td>
<td>4 (0.04%)</td>
<td>6 (0.05%)</td>
<td>103</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The actual time spent on the computation on Xilinx FPGA is around 1 second even with clock frequency at 300 MHz, which is still 3× slower than the overall execution time on Intel platforms. We therefore conclude that the performance bottleneck is the coupling of the pipeline II and PAR caused by the memory port contention. To achieve better performance, we must decouple the II and PAR, and effectively hide or eliminate the external memory stalls.

Aside from the performance portability, we also noticed a significant difference in build time. As BSIZE decreases and PAR increases, the build time increases. Examination of the logs shows that the increase mainly comes from place and route. But compared with the unsynthesizable Xilinx OpenCL C version with PAR = 64, Vitis took no longer than 5 hours to build the bitstream across the C/C++ design space.

V. CONCLUSIONS AND FUTURE WORK
This work presents our efforts to port an application kernel that has already been optimized for Intel FPGA to the Xilinx platform and our evaluation of its performance and portability. We found that most FPGA optimizations including the 1D and 2D...
2D shift registers can be successfully ported with relatively low effort. Inter loop dependency optimization can also be easily ported as Vitis is a best effort multi-pass compiler and will try to resolve all different kinds of loop carried dependency itself. But in terms of performance, one-to-one kernel optimization ports is not enough. The rigorous constraint on pipeline II for burst transfer inference of the Xilinx compiler requires significant rewriting of the code that works well on Intel FPGAs, which is also the biggest contributor of the performance difference. By rewriting the kernel in the style that the Xilinx compiler prefers, we enabled burst transactions to/from the global memories and reduced the average transaction latency to around 300 ns and the overall execution time to 2.2 s, achieving a 143× speedup relative to the baseline kernel and 134× speedup relative to the one-to-one optimizations port version. But even with the rewriting for burst transfer, there is still an order of magnitude gap in the performance between the Xilinx kernel and the Intel kernel.

Besides the compiler options we explored in this work, Xilinx C/C++ offers additional compiler options that can potentially improve the performance. For example, using the latency option in the INTERFACE pragma to issue read and write requests in advance could reduce external memory stall cycles. Merging sequential loops with the LOOP MERGE pragma can eliminate cycles between loops. However, many of these techniques can only reduce the depth of each loop iteration. As the performance analysis in Section IV-D shows, the overall execution time will not be reduced to less than 1 s if the pipeline II is not reduced. We could possibly break the performance bottleneck by rewriting the memory access into functions and use the DATAFLOW pragma as described in [10] and [8] and by applying the AGGREGATE pragma, which is similar to the DATA_PACK directive that is no longer supported in Vitis to utilize the full port width. For this work’s purpose of evaluating portability of HLS codes, we choose to stop and conclude that simply performing one-to-one optimization ports and rewriting loops for burst transfer is not enough to make the HLS design’s performance portable one optimization port version. But even with the rewriting for burst transfer, there is still an order of magnitude gap in the performance between the Xilinx kernel and the Intel kernel.

The authors would like to acknowledge the ORNL Experimental Computing Laboratory team for its support with the compute resources and the software stack. We would also like to acknowledge Amy An for her help in data analysis and presentation. This research was supported in part by the following sources: National Science Foundation (NSF) under grant CNS-1763503, Defense Advanced Research Projects Agency (DARPA) Microsystems Technology Office (MTO) Domain-Specific System-on-Chip Program, and the US Department of Energy (DOE) Advanced Scientific Computing Research (ASCR) program.

This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the [DOE Public Access Plan].